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Abstract
We propose MultiLevel Tactics, or ML Tactics for short, an extension to MLIR that recognizes patterns of high-
level abstractions (e.g., linear algebra operations) in low-level dialects and replaces them with the corresponding
operations of an appropriate high-level dialect. Our current prototype recognizes matrix multiplications in loop
nests of the Affine dialect and lifts these to the Linalg dialect. The pattern recognition and replacement scheme are
designed as reusable building blocks for transformations between arbitrary dialects and can be used to recognize
commonly recurrent patterns in HPC applications.

ML Tactics
The MLIR infrastructure is a collection of modular and reusable software components for the progressive lowering
of operations from high-level abstractions to a low-level IR. The compiler technology is non-opinionated: instead of
providing a fixed set of abstraction levels and operations, it supports custom dialects with custom abstractions, op-
erations and transformations as first-class citizens. This enables developers to build specialized compilers operating
at an appropriate level of abstraction for their application or hardware targets.

However, the compilation pipeline currently works in a single direction: high-level operations can be transformed
into operations with a lower level of abstraction, but low-level operations are never raised to high-level dialects. This
means that the entry point into the compilation pipeline defines the highest level of abstraction for all subsequent
transformations, potentially limiting the set of applicable optimizations. Aggressive transformations that rely on
high-level information (e.g., calling BLAS operations) may remain inaccessible, and the performance of the generated
code might remain behind its potential.

Merely relying on a specification of the source program is inconvenient, as this requires programmers to match
the abstractions used internally by the compiler manually. It also excludes all source programs written in general-
purpose languages (e.g., C/C++) which are not sufficiently expressive to preserve the required high-level informa-
tion. To mitigate this problem, we propose an extension to MLIR based on the concepts of Loop Tactics [1] that
allows for the implementation of transparent pattern-based transformations from low-level to high-level dialects.
Our current prototype enables to lift from Affine to Linalg as shown in Figure 1 (red arrow).

The extension provides two kinds of matchers: structural matchers and access relation matchers. The former
extend the NestedMatchers, already available in MLIR, to recognize specific loop structures (i.e., 2-dimensional or
3-dimensional affine loop nests), while the latter can be used to match specific access patterns using placeholders for
induction variables and array accesses. An induction variable placeholder can be any affine expression ω = k ∗ ι+ c,
where k is the coefficient, and c is the increment, whereas ι defines the bounded induction variable. A simple access
matcher for a GEMM kernel is shown in Listing 1.
Conclusion We present a prototype that recognizes loop nests implementing a general matrix-matrix multipli-
cation (GEMM) in the Affine dialect and lifts them to the Linalg dialect by replacing these occurrences with a
linalg.matmul operation.
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Figure 1: MLIR lowering pipeline with different dialects at different abstraction levels. General-purpose codes are
not sufficiently expressive enough to enter the higher part of the lowering pipeline, excluding the possibility for
more aggressive optimizations. ML Tactics provides the necessary infrastructure to lift from low-level dialects to
high-level ones. Our current prototype lifts from Affine to Linalg (red arrow).

// bind placeholders to induction variables

// captured by the structural matcher.

auto _i = placeholder(/*ctx*/ , m_SpecificVal(i));

auto _j = placeholder(/*ctx*/ , m_SpecificVal(j));

auto _k = placeholder(/*ctx*/ , m_SpecificVal(k));

// capture ‘A’, ‘B' and ‘C’ necessary for

// the builder.

MemRefType A, B, C;

auto _A = arrayPlaceholder(m_Val(A));

auto _B = arrayPlaceholder(m_Val(B));

auto _C = arrayPlaceholder(m_Val(C));

// build GEMM access pattern.

auto a = m_Op<AffineLoadOp>(_A({_i, _k}));

auto b = m_Op<AffineLoadOp>(_B({_k, _j}));

auto c = m_Op<AffineLoadOp>(_C({_i, _j}));

auto gemm = m_Op<AddFOp>(c, m_Op<MulFOp>(a, b));

Listing 1: Access pattern matcher for a GEMM kernel. Placeholders must be assigned an induction variable captured
by a structural matcher. On the other hand, array placeholders allow to capture the underneath MemRefType that
will be used by the declarative builder (EDSC) available in MLIR to build the linalg.matmul operation.
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Future Work Shortly we will extend ML Tactics to cover a higher number of commonly recurring linear-algebra
patterns in HPC applications and liftback from Affine to Linalg. Now that the FORTRAN dialect is available
(F18), we will study how the U.S. climate model [3] written in FORTRAN code can be lifted to Stencil to leverage
high-level optimizatons [2].
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