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ABSTRACT

Identifying the (near) optimal program variants an optimizing and
parallelizing compiler should generate is known to be difficult. Au-
totuning is the best solution to navigate the often high-dimensional
space of possible options. However, to be practical an autotuner
should (a) have high convergence speed and (b) be robust in face
of varying inputs. Current techniques for offline tuning, where
convergence speed is less important, provide solutions only for
known inputs, whereas online tuning can be input sensitive but
currently lacks in convergence speed. In this paper, we present
hierarchical online-autotuning, a novel technique to exploit struc-
ture in the search space and the underlying tuning problem to
increase convergence speed during online tuning. By modeling
symmetries and redundancies in configurations and by exploiting
domain knowledge to predict performance we reduce the search
space size by orders of magnitudes. Combining our tuner with
a polyhedral parallelizing compiler for GPUs, we show that the
performance of a GEMM GPU kernel generated with default pa-
rameters is increased by 6x and that the convergence speed of the
tuning process is increased by a factor of up to 1.7 compared to
OpenTuner. With hierarchical tuning we make the deployment of
always-on online-autotuning practical.
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1 INTRODUCTION

It is not the complexity of new hardware, but the generation of
efficient code for today’s increasingly complex hardware that is
likely to become the limiting factor for further increases in com-
putational performance. Today’s continuously increasing demand
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for more compute power, together with a growing need for low
power devices, has resulted in the near-ubiquitous deployment of
heterogeneous hardware. From embedded devices to supercomput-
ers, typical hardware deployments complement a general purpose
host processor with a variety of specialized accelerators, most com-
monly GPUs, but also FPGA, DSPs, and others. Programming this
hardware for high-performance does not only require knowledge
of a range of specialized programming paradigms. It also requires
the programmer to choose performance-optimal program imple-
mentations taken from a large set of choices with vastly different
performance.

Even though analytical performance models exist and indeed
excel in optimizing specific program properties, those reaching
for near peak-performance usually fall back to automatic search
space exploration techniques. While analytical performance models
have been shown to be extremely successful for specific kernels
and platforms such as BLAS on CPUs [29], more complex tuning
problems that involve a variety of different kernels or tuning deci-
sions on different levels of the code generation process are broadly
assumed to require automatic tuning techniques. Hence, produc-
tion DSL compilers such as Halide [37], Polymage [33], or Tensor
Comprehensions [47] provide the ability to use manually specified
transformations or rely on a simple analytical performance model,
but for production runs or research evaluations autotuned codes
are commonly used.

Applying autotuning to compilers raises a new major design
question: Should tuning be applied offline (i.e., during compilation),
or online (i.e, during application runtime)? The tuning scenario
for offline methods is straightforward: the program is repeatedly
compiled and measured on a set of predefined or randomly gener-
ated inputs, trying different compilation options in every iteration.
For online-autotuning the scenario is more involved. Here, the
autotuner is integrated into the program by the compiler and is
always on, tuning continuously. To measure the to-be-tuned part
the program flow has to execute it repeatably. The repetition does
not require any structure and most programs of interest feature an
expensive section that is called recursively, iteratively, or through
event-based invocations. These repetitions form the tuning loop.
Each iteration of the tuning loop is measured and communicated
to the online-autotuner. Between iterations the online-autotuner
chooses and sets new configurations. In an online context the in-
put is not a predefined set of test inputs but the actual input of
the deployed program. Continuous online-autotuning therefore
optimizes the actual production use of the program. Optimized
configurations for given inputs can be remembered for future oc-
currences of the same input, this circumvents the need to restart
the online-autotuning process for already known states. Further
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Figure 1: Search space graph for a partitioned 2D kernel
offloaded to both GPU and CPU. Parameters in rectangu-
lar boxes are nominal, those in rounded boxes are non-
nominal.

benefits of online-autotuning come from taking the current system
state into account. Load levels, bandwidth limits or I/O are just
some examples of runtime effects that cannot be observed during
offline-autotuning but are inherently respected in an online context.

The major drawback of online tuning is that every decision, good
or bad, is directly visible to the user of the tuned application. This
means online tuners need to complete their search as quickly as
possible, avoiding bad configurations as much as possible. To make
deploying always-on online tuning feasible, we present a novel
autotuner in this paper which improves upon the state of the art
in terms of search time while still finding adequate results. We ap-
ply it to dynamically optimize automatic accelerator mapping. We
model the space of possible program variants as a directed acyclic
graph that expresses dependences between parameters. As an ex-
ample, Figure 1 shows an excerpt of the search space graph for the
accelerator mapping and tuning problem. Independent subspaces,
which are the nodes of the graph, may be tuned by individual, po-
tentially different search algorithms. Using analytical information
about the search space, manually designed rules can further steer
the search and additionally prune uninteresting parts of the search
space without actually sampling them. By tuning hierarchically, we
only need to explore a small subset of the actual search space. As
part of a parallelizing compiler, both the analytical models and the
dependences are derived without programmer interaction.

We evaluate our new online tuning approach by embedding it
into an extension of Polly-ACC [20], a state-of-the-art parallelizing
compiler for GPUs. Our extension enables cooperative execution on
GPUs and CPUs, sharing work across platforms while optimizing
the distribution and platform-specific parameters (such as tile sizes,
thread blocks, shared memory, unrolling). Even though the search
space we explore is large and complex, our experiments show that
exploiting its structure while using analytical compiler heuristics
to prune the search space yield performance improvements of 6x
for the Polybench GEMM kernel, reducing the search time by a
factor of 2.

The key contributions of this paper are:

e A method to exploit structure in the search space, allowing
for hierarchical tuning of dependent subspaces using indi-
vidual search algorithms, thus reducing the complexity of
the space by orders of magnitude.
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o A parallelizing compiler for cooperative multiplatform ex-
ecution, embedding the online tuner into the program to
optimize work distribution and platform-specific parame-
ters.

e Pruning of the search space using rules automatically imple-
mented by the compiler.

2 BACKGROUND

We summarize the background and formalization of both autotun-
ing and polyhedral accelerator compilation.

2.1 Offline- and Online-Autotuning

For the task of autotuning, the categorization into offline and online
methods is of little consequence, as any tuning method invented
for either class can be applied to the other. The key difference is a
shift of priorities. Offline tuning, as popularized by the ATLAS [54]
library in 2001, entails searching for an optimal configuration ahead
of time, e.g. during compilation or deployment. With online tuning,
such as the tuner promoted by ActiveHarmony [44], optimization
happens at application runtime. Every sample configuration and its
runtime is thus observable by users of the system. Since every bad
decision of the tuner impacts the overall performance, a desirable
if not mandatory property of an online search is quick convergence
with as few bad samples as possible. The fundamental difference
to offline-autotuning is that the cost of exploration has to be amor-
tized during the tuning process itself. Convergence in the context
of tuning means for the tuner to eventually settle on a single con-
figuration without exploring any further. This final configuration
is not necessarily globally optimal. ActiveHarmony, for example,
defaults to the Nelder-Mead [34] search algorithm instead of an
exhaustive search, accepting that this might only produce a local
optimum.

To formalize the autotuning process, we follow Pfaffe et al. [36]
in their definition of tuning as the process of minimizing a mea-
surement function m : 7 — R. For a given configuration C € T,
m(C) is a measurement of the execution time of the parallelized pro-
gram part using the parameter configuration C. The tuning space or
search space is the space spanned by the tuning parameters r; C R:

T=T0X---XT]§R].

Pfaffe et al. further classify parameters into one of the four
classes: Nominal, Ordinal, Interval, or Ratio parameters based on
their respective scale. A typical nominal parameter, defined by
an unordered collection of values, is controlling the choice of an
algorithm or platform, whereas a ratio parameter would be the
thread count in a parallel region. For simplicity, we only distinguish
between nominal and non-nominal parameters in this work. The
distinction between these classes is important because it affects
the selection of search algorithms. Algorithms often cannot handle
nominal parameters correctly, because they rely on metrics such
as distance or the gradient of the measurement function, both of
which have no meaning in a nominal parameter dimension.

2.2 Polyhedral Accelerator Compilation

Translating a sequential program into a program that runs effi-
ciently on an accelerator system is a compilation problem where
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for (int t = @; t <= T; t++)

for (int i = 1;

i< 1023; i++)

for (int j = 1; j < 1023; j++)
if (t %2 ==0)
S: A[il[3] += BLi-11L j1 + BL i1[j+1]
+ B[ oIl o]
+ BL 1i1[j-11 + BLi+1I[L 3jI;
else
T: BLil[j] += A[i-11[ j1 + AL il[j+1]
+ AL ol[ o]

+

AL i103-11 + ALi#110 J1;

Figure 2: A simple 2D stencil kernel.

polyhedral compilation techniques [18] have proven effective. PPCG
[48] is a state-of-the-art automatic polyhedral mapper, which is
used both in Facebook’s domain specific deep learning compiler
“Tensor Comprehension” [47] as well as in LLVM’s Polly-ACC GPU
compiler [20]. It’s design is a good example for a polyhedral ac-
celerator mapper. Starting from a DSL or (subsets of) imperative
sequential C programs, an abstract model of the given computa-
tion is extracted [49]. This model captures three properties: 1) the
iteration space describes the set of dynamic computations that are
executed, 2) the memory access relations describe the data that is ac-
cessed for each dynamic computation, and 3) the schedule describes
the relative execution time, as well as the hardware resource on
which it is executed, for each dynamic computation. Optimizing
transformations are expressed as transformations on either the
memory access relations (2) or the schedule. After an optimal trans-
formation has been found, an imperative AST [21] is regenerated.
At the core of polyhedral compilation are Presburger sets and
relations. A Presburger set S = {i | cons(i,p),i € Z".p € ZF} is
a (n + k)-dimensional vector space over Z with n variable dimen-
sions and k designated parametric constant dimensions. The set
of points contained in a set S is described by Presburger formulas
over i and p. Presburger formula are constructed from boolean op-
erations (A, V, = , /) over comparisons (<, <, >, >, =, #) between
quasi-affine expressions. An expression is quasi-affine if it is an
integer constant, a variable, or a parametric constant. Sums and
differences between quasi-affine expressions are also quasi-affine,
products require at least one operand to be constant, and divisions
and modulo operations require a constant divisor. A Presburger
relation R = {i — J | cons(i, ], p),i € Z",j € Z™p € ZF} is defined
accordingly. For readability, we allow tuples to carry “names”.
Using the code in Figure 2 we illustrate how a simple C program is
modeled with Presburger Sets. The iteration space (aka, its domain),
is defined by D = {S(t,i,j) : 0 < i,j < 1222A0 <t < TA
tmod2 = 0;T(t,i,j) : 0 <i,j <1222A0<t <TAtmod2 =
1}. The schedule 0 = {S(t,i,j) — (t,i,j,0); T(t,i,j) — (¢,1,j,1)}
describes the execution order as specified in the original program.
The relation W = {S(t, i, j) — A(i, j); T(t,1,j) — B(i, j)} describes
the set of memory locations written to, the relation R = {S(t, i, j) —
A’ j) |i-1<i <i+1Aj—-1<j <j+1;T(tij) —
B(i’,j) | i-1<i <i+1Aj—1<j < j+ 1} describes the
memory locations read. Many classical loop transformations such
as interchange, tiling, fusion, and fission can be directly described
as schedule transformations but, for more complex transformations
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domain: S(t,i,j) |1 <i,j<1222A0<t<TAtmod2=0;
T(t,i,j)|1<i,j<1222A0<t<TAtmod2=1

[
[band: S(t.1.)) = (1): T(t.1.)) = (1]

|

’ band: S(¢,i,) — (i,)); T(t, 1, ) — (i, ) ‘

sequence

filter: S(t,i,j)

filter: T(t,1i,j )

Figure 3: Schedule tree representation of the code in Fig-
ure 2.

such as GPU mapping, more structured schedule representation,
e.g., schedule trees [50], have proven easier to work with.

A schedule tree at its root has a domain node, defining the itera-
tion domain of the program. Below, there is a combination of the
following nodes: 1) a sequence node defines the sequential execution
of two sub trees, 2) a filter node limits the elements enumerated in
sub tree to the elements specified in the provided filter, and 3) a
band node defines a set of partial schedule dimensions.

Figure 3 illustrates the schedule tree corresponding to the C code
in Figure 2. It consists of a domain node at the root We then see
two band nodes. The first provides the schedule for the time loop,
the second the schedule for the two space loops. Finally, there is
a sequence node which sorts the two statements at the innermost
level and filter nodes which ensure that each branch of the sequence
node only executes the statement indicated in the filter node.

Polyhedral loop modeling techniques provide facilities that make
accelerator mapping easy. To automatically generate GPU code,
Polly-ACC [20] and the underlying polyhedral mapper PPCG [48]
start from a schedule tree representation of the original program,
and transform this tree gradually into a GPU-aware program. As
a first step, a Pluto-style [9] scheduler is run on the schedule tree
aiming to maximize the number of outer-parallel loop nests. Sub-
sequently, band nodes that model parallel loop nests are mapped
to both thread identifiers and block identifiers. These parametric
constants are used to relate individual statement instances in the
parallel loop round-robin to subsequent threads and blocks. In case
there are more computations than threads or blocks, remaining
computations are mapped to a thread and block id equal to the
iteration id modulo the maximal thread or block count. After the
actual computation has been mapped to the GPU, there are various
additional optimizations that become possible. The memory access
behavior can for example be improved by introducing shared or
private memory. While GPU mapping is easy, many choices (e.g,
tile sizes, use of shared memory, ...) need to be made to derive a
good GPU mapping. Today, either simple heuristics or auto-tuning
is used.
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3 HIERARCHICAL ONLINE AUTOTUNING

In this section we will introduce our autotuning framework as well
as our core contribution, hierarchical online-autotuning.

3.1 Search-Based Online-Tuning

We implemented the hierarchical tuning technique as part of our
online autotuner libtuning. As online tuner, it is required to be
low-overhead and to integrate easily with performance critical ap-
plications. It ships with a small array of search techniques: Nelder-
Mead[34], e-Greedy[36], Full-, and Random-Search. Nelder-Mead
and e-Greedy are, respectively, the defaults for non-nominal and
nominal search spaces. The library supports arbitrary parameter
types, and only distinguishes between nominal and non-nominal pa-
rameters. This is possible because of a strict abstraction between the
application-facing parameter space and the search algorithm-facing
search space. In this abstraction layer, we map the arbitrarily typed
and usually bounded application parameters into a real-valued, un-
bounded space for the search to operate on. This not only simplifies
applicability of the library, but also reduces numerical problems.
The space mapping is controlled by the user. For the default numer-
ical (i.e. integer and float valued) parameters, this mapping simply
means rounding. If the parameter is bounded, the default mapping
includes mirroring it at its boundaries, thus producing a periodic
search space. Because of this feature search algorithms do not have
to deal with boundary conditions. This approach preserves both
local and global extrema, but makes the measurement function
discontinuous at the boundaries.

The distinction between nominal and non-nominal parameters is
a key feature in 1ibtuning, and their handling is entirely transpar-
ent. The autotuner will construct separate search spaces for either
class. This behavior is a major distinction from existing tuning
approaches, which widely ignore the difference between the param-
eter classes. Few search algorithms are able to deal with nominal
parameters correctly, the most prominent probably being genetic
algorithms [36]. Nevertheless, in the existing literature, researchers
apply general search based tuning techniques to this class, and still
report success (e.g., OpenTuner[2], which Ansel et al. apply to GCC
command line arguments).

Separating the different search spaces of course does not imply
independence, since parameters are generally interdependent. If
they were not, tuning them separately with individual autotuners,
thus reducing the dimensionality of the search space, would pro-
duce results more quickly. Hence, independently finding a partial
configuration for both spaces and combining them into a total con-
figuration is not equivalent to finding a total configuration on the
global space. Restoring this equivalence requires reestablishing
parameter dependences. We realize this by maintaining separate
search states for every nominal parameter configuration. Assume,
for instance, two parameters 7y = {0,1,2} and 7g = [1,0] C R,
where 7y is nominal. To produce a global configuration, we first
determine a partial configuration C for 7y using an appropriate
search algorithm. To obtain a partial configuration for zg, we in-
stantiate the search algorithm of choice |7n7| = 3 times. Using Cy,
we then pick the according instance and use it to produce a partial
configuration Cg. This gives us a total configuration C = (Cn;, CR)
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which correctly respects relationships between dependant parame-
ters.

3.1.1  Parameter Dependences & Search Space Graph. While ex-
plicitly differentiating between nominal and non-nominal parame-
ters allows us to reason about them more flexibly, it does not help
reduce the dimensionality of the search space, and comes at the
price of an increased memory footprint. However, since we now
have purely nominal spaces, there is an interesting peculiarity of
nominal parameters that frequently arises in practical applications:
Often there are explicit relationships defined by the application,
e.g., when tuning thread count and platform selection, the number
of GPU threads is not needed if the GPU is unused.

To exploit the dependencies, we decompose the global search
space into a set of disjoint local spaces which we call the search
space graph. The libtuning-interface allows application develop-
ers to specify dependency constraints, from which the autotuner
automatically constructs the search space graph. To illustrate this
idea we refer to Figure 1. The figure shows a subset of the decompo-
sition of the search space for a partitioned 2D kernel, offloaded to
CPU and GPU. Annotations on the edges represent dependencies,
blue round-cornered boxes contain only nominal parameters, or-
ange rectangular boxes only non-nominal parameters. Computing
the decomposition is trivial and is implemented greedily. To find a
configuration of the global search space the subspaces are tuned
hierarchically, finding partial configurations by walking the graph
from its root along all edges with satisfied constraints. Visited nodes
are called the active spaces. Note that for presentation purposes the
figure shows every non-nominal parameter only in exactly one box.
In practice, non-nominal parameters are part of multiple subspaces
in general, because when the dependence constraints for two such
parameters are satisfied, they cannot be legally tuned separately.
In the example, the parameters Ro, R; are thus present in every
non-nominal subspace in practice. As a consequence, there is only
a single active non-nominal space.

Because of similar reasons, configurations in dependent spaces
cannot be selected independently from their parents. We handle
this issue by lazily instantiating and retaining state of the search for
the dependent space for every parent nominal configuration. This
entails potentially consuming large amounts of memory, although
the effect is moderate in our experience because of the reduction
of dimensionalities: The nominal subspace of the graph in Figure 1
contains 74 configurations, instead of the 16* nominal configura-
tions of the unconstrained global space. Nevertheless we expect
that for applications in which there are no or too few exploitable
dependencies the memory consumption may outweigh the benefits
of our approach .

3.1.2  Runtime Feedback for Driving the Search. There is an ad-
ditional opportunity to further decrease the numbers of configura-
tions we need to sample, especially when we are applying tuning
in the context of parallelizing compilers. In addition to the static
information used to thin out the search space, we can use dynamic
information at application runtime to identify uninteresting config-
urations without actually sampling them. As an example, consider
autotuning offloading of a matrix multiplication kernel to a GPU,
i.e. deciding whether or not the GPU should be used. If the input
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’domain: D(S)={()|1<i<N} \

band: S1:(i) — (i)

(a) Original schedule: 1D domain with trivial coincident band.
] domain: D(S) = {(i) |1 <i < N} \

set

filter: {(i) |1 < i < RoA
1<Ry <N}

filter: {(i) | Ry < i < NA
1 <Ry <N}

band: S1:(i) — (i)

band : S1:(i) — (i)

(b) Partitioned schedule: Adds set of filters and a splitting point Ry.
Figure 4: Schedule partitioning.

matrix size is 4 X 4 elements, we can safely assume that choosing a
GPU over a CPU is not optimal.

A configuration rejection is handled differently within nominal
and non-nominal nodes. Since nominal search algorithms usually
need to deal with an enumeration of all configurations, a rejection
means simply skipping one. In a non-nominal search, skipping a
single point is not that easy. Thus, handling may be implemented
by the user, but we provide a non-stationary penalty function[24]
by default.

3.2 Autotuning Polyhedral Parallelization

In this paper, we apply online-autotuning to Polly-ACC, which
we extend for tunable heterogeneous partitioning. Fundamentally
this means that we generate parallel code for both CPU and GPU,
parametrically partitioning the original loop nest. Size and target
platform for each partition can be determined dynamically at appli-
cation runtime.

In the schedule tree we first identify kernel candidates for parti-
tioning by finding leading coincident bands. To illustrate the par-
titioning process, consider the schedule tree example in Figure 4.
Figure 4a shows a schedule tree for a static control part (SCoP)
containing only one outer loop and a simple schedule mapping
every iteration onto an individual timestamp. Assuming the corre-
sponding leading band is coincident, we partition it according to
the example in Figure 4b: Between the leading coincident band and
its parent, we insert a set node, whose filter children will imple-
ment the partitioning. Although this is trivially generalizable to an
arbitrary number of partitions, for simplicity’s sake we only split
the domain into two partitions. We introduce a new parameter Ry
to define the partition splitting point, subject to the same affine
constraints as the dimension it is splitting. This parameter then
becomes a new upper and lower bound in the higher and lower
partition, respectively. The original band node is duplicated, and
becomes a child to every new filter node. This process is repeated
recursively for every leading coincident dimension that is to be
partitioned. Consequently, if we partition d dimensions, we will
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end up inserting 29 — 1 set nodes and producing 29 duplicates of
the original band. The parameters R; are tunable parameters.

To implement platform selection, we follow exactly the same
path. For every band node we create, we insert a new sequence
node as its immediate parent between the band node and the newly
created set filter. In the two filters of the new sequence node,
we introduce another new parameter P; for platform selection,
0 < P; < 1, and insert the constraints P; = 0 and P; = 1 accord-
ingly. Again duplicating the band node, we finally parallelize it for
the GPU by applying the PPCG mapping algorithm to the band
where P; = 1. For its sibling, however, we insert a mark node, which
we use during AST generation as the starting point of generating
OpenMP code for CPU parallelization. GPU code generation uses
the existing capabilities of Polly-ACC with one important exten-
sion. Previously, the compiler could safely assume that the GPU
is the only entity reading and writing data while the kernel is
running. Thus, Polly-ACC always copies arrays in their entirety,
independent of how much of the array is actually accessed in the
kernel. With multi platform partitioning, however, this becomes
infeasible. Different partitions may access an array concurrently
and write different parts of it. These writes must not be overwrit-
ten by data transfers. Hence, our solution analyzes accesses to an
array precisely, producing a set of (strided) slices of accessed data.
Intersecting these slices with a partition’s schedule yields the exact
regions of memory accessed by this partition, which we then copy
individually between platforms.

3.2.1 Multiversioning for Platform Parameters. So far, we have
extracted two classes of tunable parameters from the parallelized
program. However, there are many additional tuning opportunities
in this process. For instance, tuning the number of threads on a
CPU partition is straightforward, since the OpenMP runtime li-
brary simply accepts this as a parameter. Additionally, we elicit
several more parameters from the GPU mapping process. When
calling into the PPCG mapper, multiple GPU platform parameters
are exposed as configurable options, such as the maximum tile size,
the block and grid layout, or which memory architectures to use.
Naturally we wish to leverage the tunability of these parameters;
however, it comes with a cost: Affineness is a necessary precon-
dition of polyhedral modeling and code generation. While these
platform parameters are configurable during mapping, they cannot
be variable (and thus runtime-configurable), since that would make
the model constraints non-affine. To circumvent this unfortunate
issue we resort to multi-versioning. While we cannot change these
parameters at application runtime, we nonetheless can generate
a large amount of different configurations during compile time,
and use autotuning to choose between configurations. In fact, from
the perspective of the autotuner, there is no discernible difference
between those two options. On the other hand, generating a few
hundred or thousand different versions of the code enormously
increases compile time and binary size. As a data-point, the size of
the parallelized binary for the Polybench GEMM benchmark that
we use in our evaluation is 9IMiB.

In summary, the tuning parameters we generate are listed in
Table 1, along with their respective semantics. The inter-parameter
dependences induced by this choice are straightforward: The in-
dividual instances of the platform parameters for every partition,
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Table 1: Tuning parameters for polyhedral parallelization.

Parameter Semantics

P; € {GPU, CPU} Pick the platform for partition i.

Rz €(0,1) cR Pick the sizes of partition at depth d.

TiCP UelyCl #0penMP threads on the CPU (up to #cores

C in the system).

#points/tile (#GPU-threads/block).

Allow GPU shared memory.

Unroll accesses to tile points.

Unroll accesses when copying the tile into
shared memory.

Height of the 2D block (GPU grid size).

TEPU =32k, k € [1, 8]
S; € {true, false}
Ul.T € {true, false}
UiS € {true, false}

B; =2k, k €0, 5]

e.g. CPU-Threads or Tile-Sizes, naturally depend on the platform
choice for this partition. Similarly, unrolling accesses to the shared
memory only makes sense if shared memory is enabled. The search
space graph for these parameters of a 2D kernel is partially shown
in Figure 1, omitting for clarity the subgraphs for all but the first
partition, which are structurally identical.

3.2.2  Runtime Feedback Rules. Beyond parameter dependences,
we use the polyhedral representation of the partitions to derive run-
time feedback rules to further aid the search. For a polyhedron, we
first compute three metrics, Mcomputes Mmemory> Mreuse, using
Barvinok’s algorithm for point counting in lattice polyhedral5, 51].
The compute volume Mcompute is simply the number of points
in the polyhedron, which. corresponds to the number of dynamic
statement instances. To compute the memory footprint of a single
access A, we count the points in the image of the access functions
for the scheduled domain of A. The metric Mmemory is then the
sum of all memory footprints for all accesses in the kernel. The
Meuse metric is computed similarly to the memory footprint,
counting the number of accesses to the same element within an
outer iteration. Note that cardinality of an integer set is parametric,
in the sense that in general it is a polynomial expression of the
tuning parameters and kernel inputs. To evaluate these metrics, we
hence generate code to compute the expression using the actual
parameter configurations and inputs at runtime.

We define three truth-valued rules, which, if evaluated to true,
cause a configuration to be rejected:

Min-Compute A minimum compute to enable the GPU:

P; =GPU — r%ax Mcompute; < p
k

Compute Intensity GPU kernels are compute bound

maxp, Mcompute;
P; =GPU — — k7 computer
maxg, Mmemory,-

Min-Reuse Sufficient reuse for shared memory:

Si — Il’}lzaXMrgusei <1
k

Note that in all of these rules we use a max operator. Because of
this, rules depend completely on nominal parameters, which allows
the rejection of configurations early and within the nominal spaces.
Rejecting a configuration in a nominal space is significantly simpler
from a search algorithm perspective, and less error prone. Although
fundamentally maximizing a polynomial over a bounded space
is hard and expensive, we can greatly simplify the computation:
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because of how we introduce partitioning parameters and because
everything is required to be affine in a polyhedral model, these
parameters only ever appear as linear terms in the expression.
Thus, we can substitute them for their lower and upper bounds,
and maximize over the result at runtime.

4 EVALUATION

To evaluate our process, we apply polyhedral parallelization and
runtime autotuning on blas and kernels linear algebra packages
of the Polybench 4.2.1-beta benchmark suite. For all Benchmarks
we use the predefined EXTRA_LARGE input sets. The performance
results we present in this paper were obtained on a dual-socket 12-
core Xeon machine with 2xSMT, clocked at 2.6GHz and equipped
with an NVIDIA Tesla P100 GPU. To simplify this evaluation, we
made small modifications to the original benchmarks. By changing
Polybench’s memory manager to allocate pinned memory on the
host, we simplify the complexity of data movement. While this
saves us from having to implement complex management of CUDA
contexts per kernel partition for asynchronous data transfers, it
also has an effect on benchmark results: placing buffers in pinned
host memory enables DMA transfers between GPU and host. Ad-
ditionally, we wrap Polybench’s invocation of the kernel into a
loop to create an online tuning loop. Lastly, we had to overcome a
limitation of our current implementation of the parallelizer, which
can only handle a single parallel kernel per SCoP. Hence we modi-
fied the structure of the kernel loops by fissioning multi-statement
loops which after scheduling would produce a sequence of parallel
bands. To break the new sequence of loops into seperate SCoPs we
inserted memory fences as seperators.

In the following, we report overall speedup results for the Poly-
bench benchmarks. To specifically assess the benefits of our hi-
erarchical tuning approach for online tuning, we then present a
case study of the gemm kernel and analyse the induced search space
and the tuning behavior in detail. We compare hierarchical tun-
ing against OpenTuner and classical Nelder-Mead search, and thus
indirectly against ActiveHarmony which is based on it. With the
exception of OpenTuner, all recorded time measurements always
include all overhead of the autotuner, although profiling shows
the overhead is generally negligible. We ensure kernel compilation
overhead is not included in the measurements.

4.1 Overall Performance Results

In Figure 5 we compare the runtime of the polybench kernel after
parallelization and tuning with our approach to the runtime using
either Polly (i.e., clang -03 -polly) or Polly-ACC'. Polly-ACC
uses its default values TGPV = 32,8 = vl =yUs = false,B = 1.
Additionally, we also used OpenTuner to optimize our parallelized
program. The plot shows speedups of our approach over three
baselines, OpenTuner, Polly, and Polly-ACC and also includes a
clang -03 baseline for gemm. To determine the kernel runtime
for our approach, we parallelize the kernel and then tune it for
300 iterations, which is more than enough to guarantee that the
tuner is converged. We repeat this run 20 times, reporting the
median runtime of the last 20 iterations. The reference runtime
is the median runtime computed from 20 kernel invocations for

Both at svn revision r310059



ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

&3 OpenTuner &3 Polly 2 Polly-ACC

Philip Pfaffe, Tobias Grosser, and Martin Tillmann

64.0
32.0
16.0
8.0
4.0 .
2.0
1.0
0.5

]

Speedup

*éié"tj""_—'"'Eg'""==""§j""£%""

2mm 3mm atax bicg  doitgen gemm gemver gesummv  mvt syr2k

Figure 5: Speedups for linear algebra benchmarks over three baselines: OpenTuner, Polly, and Polly-ACC.

syrk

both Polly and Polly-ACC. Comparing to Polly-ACC, we achieve
a speedup of up to 6x on the gemm kernel. On the other hand,
for the benchmark doitgen we cause a minor slowdown of 6%.
This is because this benchmark does not benefit much from GPU
parallelization, and the additional overhead added by the multi-
platform management kills possible performance gains. In all cases
except doitgen our approach outperforms Polly by a large margin,
up to 63x for the syrk kernel.

Comparing our approach against Opentuner, we see in most
cases our tuning achieves on-par configurations. We compare our
tuning results against the best configuration found by OpenTuner
among 10 tuning repetitions for 100 iterations. For further details
on how we use OpenTuner for tuning we refer to subsection 4.4.
We achieve a geo-mean slowdown of 0.84 and our results are worst
in the 3mm and syr2k benchmarks. Interestingly, our approach also
outperforms OpenTuner’s configuration in a few cases, which indi-
cates that we did not run OpenTuner for a long enough time. The
limit of 100 iterations was selected because after that point almost
all experiments using our approach made no further improvements.

Another interesting result is visible in 2mm, 3mm and gemm. Whereas
we outperform both Polly and Polly-ACC, the tuned runtimes ex-
hibit an enormous spread. Although this is not visible in the box
plot, the configurations are not in fact spread normally around the
mean but appear in a small number of clusters. This points to the
existence of plateaus in the search space. Since the same can be
observed using regular Nelder-Mead search, we are confident that
our hierarchical tuning approach is not the cause of this behavior.

4.2 gemm Case Study: Precursory Exploration

As a precursory evaluation, we attempted to gain an understand-
ing of the global search space. A full exploration of this space is
infeasible because of its size, we resorted to subsampling this space
by severely restricting parameter ranges. In addition to the ranges
defined in Table 1 we set US = UT = o, Ry € {0.25,0.5,0.75},
B =1,TOPU < 512, TCPU = 40. Note that we also dropped the
partition subscripts: All the per-partition parameters are shared
across all partitions here. Exhaustively searching this space, we find
that the optimal configuration with a runtime of 0.48s achieves a
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Figure 6: Runtime density of the reduced search space.

speedup of 1.5% over Polly-ACC, a speedup of over 7.8 over Polly
and a speedup of over 22.4x over clang at the 03 optimization
level. This optimal configuration is however not truly unique; there
are tens of configurations with a performance similar enough that
the difference could be noise. We were unable to identify a pattern
among these configurations.

To further strengthen the claim that this search space is an
interesting candidate for autotuning, we analyzed the runtime dis-
tribution. Figure 6 shows the runtime density. The median runtime
at 1.3s is shown as a vertical dashed line. We further highlight
two interesting regions in the plot. The leftmost solid-colored area
shows the probability of guessing a configuration that is within
10% of the global optimum: If using random search, the probability
of finding a configuration which is at most 10% worse than the op-
timum is merely 0.3%. On the other hand, the probability of being
at least twice as slow as the optimum using random search is above
64%, as shown by the rightmost solid-colored area of the plot. As
a consequence, we see that it is possible to achieve a noteworthy
speedup over the default, but it is neither reasonably attainable by
full nor random exploration.

4.3 gemm Case Study: Hierarchical Autotuning

We analyse the parallelizing and tuning of the gemm kernel on the
full search space. We compare hierarchical autotuning with classi-
cal Nelder-Mead search on the full search space. In our approach,
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Figure 7: Search traces of the autotuning process.
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Figure 9: Tuning traces using small matrix size.

we use e-Greedy search on the nominal search spaces, with a non-
stationary € = 5% and an € decay of 10%. Le. , in every iteration, €
is reduced by 10%. In the non-nominal spaces we fall back to classi-
cal Nelder-Mead search. For the hyperparameters in the runtime
feedback rules we set p = 150000000, & = 2. The gemm case study
was run on a Xeon E5-2680 v3 machine with a Tesla P100 GPU.
To attain a deeper understanding of the behavior of the auto-
tuner, and especially the contribution of our novel search technique,
we look at full traces of the autotuning process. Figure 7a compares
a Nelder-Mead search on the full search space with a trace of our
hierarchical tuning approach. While both searches find a config-
uration with similar performance, we can see that our approach
converges much faster: Whereas Nelder-Mead converges at around
200 iterations, our search is completed at about 100 iterations. On
top of that, our search is not only quicker to converge, but also
samples much fewer bad configurations. In Figure 7b we show the
effect of the choice of the parameters of the e-Greedy search. It is
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easily visible that both the convergence rate as well as the chance
of sampling bad configurations are highly sensitive to the values
chosen for € and the € decay. The effect of this becomes even more
apparent when considering amortization time. Amortization time
is the time required for tuning to pay off, considering all config-
urations sampled over time. We compute it by integration over
the traces in Figure 7. The results are shown in Figure 8, including
Polly-ACC as reference. The plot demonstrate that our tuning ap-
proach begins to pay off after only 50 iterations. On the other hand,
picking an unfortunate € value leads to an even worse amortization
than Nelder-Mead.

So far, the runtime feedback rules did not contribute to the results
we have shown. Since the input matrices contain on the order of 4M
elements, and the matrix multiplication algorithm performs O(n?)
operations on O(n®) memory, neither of our rules apply. To evaluate
the benefits provided by the rules, we look at the effect of smaller
input sizes. Using 500 element matrices, we obtain traces as shown
in Figure 9. With such small matrices, the kernel is obviously not a
candidate for offloading, which we can see from the 25X slowdown
compared to clang -03. Even though Polly-ACC does perform
offloading, it is still faster than our approach by a factor of two, due
to much smaller overhead of launching only a single kernel instead
of four. Although we are outperformed by the reference compilers
by a large margin here, this is by no means an indication against our
approach: Our compiler does not implement executing the original
code or a single platform version. This can easily be implemented
however, controlled via another tuning parameter. The key thing to
note is that our autotuner converges within two iterations, because
the runtime feedback rules immediately reject offloading anything
to the GPU. Comparing this with the No Rules series, which is the
same tuner, just not evaluating the runtime rules, the benefit is
clearly visible. Nevertheless, this effect is not for free: the second
iteration, which is off the chart here, is 20X more expensive than
the converged one, because the autotuner spends tens of iterations
until it finds a configuration that satisfies the rules.

4.4 Comparison against OpenTuner

Lastly, we compare the performance of our approach to the per-
formance of OpenTuner. In Figure 5 we saw that our approach
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Figure 10: Comparing the time required to execute 100 tuning iterations between OpenTuner and Hierarchical Tuning,.
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Figure 11: Execution timeline of the gemm and atax bench-
marks for the first 100 iterations using both OpenTuner
and Hierarchical Tuning. Dots are median times required to
reach an iteration, the ribbon boundaries are the min and
max.

can be on par with OpenTuner regarding the final configuration
found. In the cases OpenTuner’s best configuration outperforms
Hierarchical Tuning we attribute this to the fact that we prioritize
finding a configuration quickly. To show that we achieve faster
cumulative runtimes through better amortization we compare the
runtime behavior of the tuners in this section.

Because of its Python implementation, OpenTuner cannot be
easily used as an online tuner operating within the tuning loop we
inserted into the benchmarks. To obtain measurement samples for
the tuner we thus allow loading parameter configurations from a
file, which remains unchanged during the tuning loop. We reduce
the trip count of the loop to 5. Then we use OpenTuner to create a
configuration file containing the next parameter setting it wants
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to sample and then run the benchmark with this configuration.
Note that this implies that unlike in our case, the time required
to determine and set the new configuration is not included in the
measurements. From the five acquired time measurements we dis-
card the first two and give the average of the remaining three as
feedback to the tuner. We run OpenTuner using its default search
strategies for 100 iterations and repeat the tuning ten times.

In Figure 10 we compare the time required for OpenTuner and
Hierarchical Tuning to perform the 100 tuning iterations. For Open-
Tuner this time is the sum of measurement samples and does not
include OpenTuner’s own runtime and the time spend starting
the benchmark applications. The plot shows the speedups of our
solution against three baselines, the Min, Median, and Max time
required by OpenTuner. In most cases, we outperform OpenTuner.
We achieve geometric mean speedups of 1.19 over the Median
baseline and 1.70 over the Max baseline. Over the Min baseline we
observe a geometric mean slowdown of 0.86. In the best case, which
is syrk, we complete the 100 iterations in half of the time required
by OpenTuner.

To better see the tuner behavior in the gemm and atax bench-
marks, we show the full tuning timelines in Figure 11a and Fig-
ure 11b, respectively. Dots denote the median time required to reach
an iteration, the ribbon boundaries are the min and max times. The
plot shows dots only for even iteration numbers to improve read-
ability. In the case of gemm, we see that the ribbons for both methods
span over a wide range of runtimes. This indicates plateaus within
the gemm search space. The median cumulative runtime of Hier-
archical Tuning is lower than OpenTuner after about half of the
iterations. For the atax benchmark we see that the two ribbons
diverge. Most likely this is because OpenTuner does not discover
a configuration that is as good as the one found by Hierarchical
Tuning, as we saw in Figure 5.

5 RELATED WORK

Since autotuning became popular in the early 2000s with the AT-
LAS library [54], it has been applied in most branches of computing
research and industry. Most autotuners are specifically tailored to
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their respective application, and there are only a handful of gen-
eral purpose tools available. Noteworthy is ActiveHarmony [44]
and the more recent OpenTuner [2]. Being an online tuner, Active-
Harmony is the most closely related to our libtuning, the key
difference being that ActiveHarmony is designed for distributed
applications offering a central tuning server. Since OpenTuner is
implemented in Python, it is rarely deployed in online scenarios.
Its key feature is that instead of requiring users to choose a fitting
search algorithm for their problem, OpenTuner makes this choice
a tuning parameter. The OpenTuner article is also, to the best of
our knowledge, the first to discuss nominal parameters. Pfaffe et
al. [36] investigate tuning these parameters more deeply, but fo-
cus only on spaces containing a single such parameter. In a recent
article, Rasch et al. introduce ATF [38], a directive-based general
purpose tuning framework. Unlike previous approaches, ATF rec-
ognizes the existence of parameter interdependences, and allows
users to express relatively arbitrary constraints. These constraints
are in fact more powerful than the mechanism we introduce, but
do not allow for the strict search space decomposition we use. In-
stead, Rasch et al. form the search space by enumerating all legal
configurations. This method works for them because their search
space is discrete. The search space of our application is large and
real-valued, rendering Rasch et al’s approach infeasible for us.

5.1 Tuning Compiler Optimizations

Finding good sequences or configurations of compiler transforma-
tions is difficult and parallelizing compilers are excellent benefi-
ciaries of autotuning. This includes both empirical tuning as we
apply it here as well as machine learning or model based techniques
(e.g, [3, 7, 10, 52]). While there is a large body of work that auto-
matically maps parallelizable codes to accelerators (e.g., [6, 15, 31,
35, 49]), most closely related to us is probably CHIiLL. CHILL [14] is
a polyhedral compiler and loop optimizer. Originally, it uses a sim-
ple search strategy that systematically tries all configurations. In
2009 Tiwari et al. pair it with ActiveHarmony [45], also taking into
account parameter constraints. They extend this towards an online
tuning scenario [46], in which they evaluate multiple code variants
in parallel on an HPC system. With CUDA-CHILL [40], the system
has also been expanded to generate parallel accelerator code. Simi-
lar to our approach, CUDA-CHILL produces multiple code variants,
and uses autotuning to navigate the resulting space. Additional
noteworthy candidates that apply or at least enable autotuning
are the ROSE [28] kernel outliner, which itself uses CHIiLL and
ActiveHarmony, the Cetus [16] source-to-source parallelizer, which
generates OpenMP code and tunes it using “Combined Elimination”,
or Bones [35], which generates CUDA code.

There is also related work in the context of domain-specific lan-
guages (DSLs). Halide [37] by Ragan-Kelley et al., is a language for
image processing pipelines. From high level algorithm and schedule
descriptions, the Halide compiler generates parallel and accelerator
code. Schedules can also be produced using autotuning, originally
implemented using the PetaBricks tuner. PetaBricks [1] is itself
a DSL aiming to optimize algorithmic choice. Most recently, the
LIFT project [22, 43] positioned itself as a data-parallel intermediate
representation for higher level DSLs. Using ATF and OpenTuner,
LIFT generates high performance code for accelerators.
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5.2 Polyhedral Performance Modeling

Polyhedral techniques are well-suited to deriving models for both
tile size selection and cache miss models. Tile size selection with
analytical models has been proposed in many variations [11, 23, 27,
29, 32, 39, 41, 42, 55]. While the earliest papers claimed “optimal-
ity” due to their analytical formulation, over time models became
more elaborate, but often specialized for a specific problem. By
integrating precise domain knowledge, Yotov et al. [55] and later
Low et al. [29] show that analytical modeling can reach near-peak
performance, if both algorithm and hardware are well understood.
Model-driven empirical search [13, 17, 19, 25, 26, 26, 53] assumes
that modeling hardware in all its complexity is too difficult. Hence,
they use iterative search together with analytical models to reduce
the size of the search space. Using a hierarchical model to reduce
the cost of the search process itself, as we do, has not been explored
yet. In the context of cache modeling, integer points counting [5]
was predicted to allow for perfect cache miss models [12], but
computing these models precisely was considered too expensive.
Alternative models [8] based on reuse distance as a proxy for cache
misses have been developed and approximations of the Barvinok al-
gorithm [30] have been considered. Just recently an expensive, but
complete cache model for affine programs has been presented [4].
Statistical methods based on machine learning have also been used
for performance modeling with Yuki et al. [56] learning techniques
to automatically derive tile size selection models.

6 CONCLUSION

In this paper we introduced hierarchical online-autotuning, a pow-
erful technique to improve convergence in online tuning scenarios
by exploiting structure and redundancies in the search space. We
integrated hierarchical tuning with a novel polyhedral paralleliza-
tion tool for heterogeneous systems. By parallelizing a kernel for
sharing the work load across accelerators, this tool can exploit
the heterogeneous system more effectively than a single-platform
parallelizer. Using autotuning, we simultaneously optimize the dis-
tribution of work and various platform specific parameters. We
evaluate our approach on the Polybench linear-algebra blas and
kernels packages and are able to report substantial speedups over
Polly and Polly-ACC. On the gemm kernel we achieve a speedup
of 63X over Polly, and 6x over Polly-ACC, a state-of-the-art poly-
hedral parallelizer for GPUs. Additionally, our hierarchical tuning
approach improves convergence of the parameter search by up to
1.7%x over OpenTuner. These results show that it is possible to ex-
ploit multiple accelerators in a single system effectively. We further
demonstrated that with hierarchical tuning deploying always-on
online-autotuning is practical and promises to optimize programs
for the actually used hardware and inputs.
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