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Abstract. A wide range of symbolic analysis and optimization problems
can be formalized using polyhedra. Sub-classes of polyhedra, also known
as sub-polyhedral domains, are sought for their lower space and time
complexity. We introduce the Strided Difference Bound Matrix (SDBM)
domain, which represents a sweet spot in the context of optimizing com-
pilers. Its expressiveness and efficient algorithms are particularly well
suited to the construction of machine learning compilers. We present
decision algorithms, abstract domain operators and computational com-
plexity proofs for SDBM. We also conduct an empirical study with the
MLIR compiler framework to validate the domain’s practical applica-
bility. We characterize a sub-class of SDBMs that frequently occurs in
practice, and demonstrate even faster algorithms on this sub-class.

1 Introduction and Motivation

The analysis and verification of computing systems involves a variety of abstrac-
tions of the system semantics. Among these, numerical abstractions capture
arithmetic properties of system variables, supporting mathematical models of
systems such as timed and hybrid automata [3,2,25] and the static analysis of
inductive definitions in loops and recursive programs [18]. Many of these ab-
stractions implement special cases of Presburger arithmetic [50] where typical
decision problems are NP-hard. The simplest special cases are non-relational,
such as interval bounds ±x ≤ c where x is a variable and c is a numeric con-
stant. More expressive, relational cases include systems of inequalities of the
form ±x± y ≤ c known as Unit Two Variable Per Inequality (UTVPI) systems.
They form the octagon abstract domain [38]. While being much cheaper to op-
erate upon than convex polyhedra [18,4], UTVPI are sufficiently expressive to
represent a wide range of multi-variable problems [39].

UTVPI algorithms rely on a Difference Bound Matrix (DBM) representation
[7], with inequalities of the form x − y ≤ c or ±x ≤ c. DBMs are ubiquitous in
formal verification [6] and static analysis [8]. Other abstractions such as congru-
ences over linear combinations of integral variables [24] capture only the lattice
structure of Presburger sets but not the inequalities. The special case of congru-
ence equalities x ≡ r mod d where r, d are integral constants and 0 ≤ r < d has
low complexity [23] and is often used to enhance other abstract domains [14].
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It has remained an open problem whether there are efficient algorithms for
the conjunction of UTVPI and congruence constraints. Such a domain would
have numerous applications in the analysis and optimization of machine learning
(ML) models. Indeed, modern ML compilers [53,11,33,48] often use a form of
Presburger representation for ML compute graphs and operations, e.g. to capture
the data layout in memory or conversions such as reshaping and padding.

Affine expressions also arise in program transformations to leverage modern
hardware, such as vectorization, fusion and thread-level parallelization. Most
of these expressions represent hyper-rectangular shapes, with occasional cases
of symmetric and triangular ones (Cholesky factorization and sequence mod-
els [35,12]), all of which can be expressed as UTVPI [49]. On the other hand,
strides and block sizes resulting from (dilated) convolutions, pooling and normal-
ization operations as well as the results of the tiling (block-wise decomposition)
transformation require congruence constraints. While some of the most advanced
compiler optimizations justify the efforts to implement full-fledged Presburger
arithmetic packages such as isl [50] and FPL [44], the majority of simpler cases
call for a definition of a relational abstract domain combining UTVPI and con-
gruences with a low-degree polynomial complexity. We also expect such a domain
to be applicable to verification efforts [13,46,5] that currently rely on Presburger
arithmetic libraries and SMT solvers; we present early results in Section 6.3.

This paper considers the conjunction of inequalities represented as a DBM
with single-variable congruences, a novel abstract domain we call Strided Dif-
ference Bound Matrices (SDBM). We also study a sub-case of these, Harmonic
SDBM (HSDBM), where such congruences form a harmonic sorted chain, which
is common in congruences produced by loop tiling in high-performance code.

Although the SDBM satisfiability problem turns out to be NP-hard, we are
able to provide and algorithm that runs in O(nmDlcm) time, where n is the
number of variables,m is the number of constraints andDlcm is the least common
multiple of all congruence divisors. This time complexity, which is pseudo-linear
in Dlcm, is practical for program analysis applications. We also present an O(n4)
complexity algorithm for HSDBM satisfiability.

Finally, we define a normal form for SDBM constraint systems that is com-
putable in at most 3m+m log(nDlcm)+nDlcm satisfiability checks in the general
case, and 3m +m log(nDlcm) + n checks in the harmonic case. Given two sys-
tems in normal form, we show that it only takes linear time to perform the join
operation, producing a constraint set admitting a union of solutions, common in
abstract interpretation. Moreover, we can perform an equality check based on
direct comparison of normal forms.

2 DBMs, SDBMs, and HSDBMs

We consider sets over the integers only, i.e., subsets of Zn for some n ∈ N. We
first define some notation. Form,n ∈ N, [n] denotes the set {1, . . . n}, nZ denotes
the set of integer multiples of n, and m | n denotes that m divides n. If G is
a weighted graph with no negative cycles and u and v are vertices in it, then
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δG(u, v) is the distance from u to v in G. bxcy refers to x rounded down to the
nearest multiple of y smaller than or equal to x. If x, y are vectors and t a scalar,
x+ t refers to element-wise addition.

Let us first formally recall the definition of Difference Bound Matrices (DBM)
over integers and their properties [20,37] before presenting SDBM.

Definition 1. A Difference Bound Matrix (DBM) is a constraint system over
variables x1, . . . xn ∈ Z of the form

−xi + xj ≤ cij `i ≤ xi ≤ ui (i, j, cij) ∈ E and li, lj ∈ Z

where E ⊆ [n]× [n]× Z denotes the set of difference bound constraints. We will
use m = |E| to denote the number of such constraints.

Not all upper and lower variable bounds `i, ui may be present. When no
such variable bounds are present we call the system variable-bound-free (VBF);
otherwise we say that the system has variable bounds.

It is known that the satisfiability of DBM constraints can be determined in
O(n3) time andO(n2) space [7,39]. We now define two special cases of Presburger
sets derived from DBMs by introducing additional congruence constraints.

Lemma 2 (DBM Shifting Lemma). If x is a solution to a VBF DBM, then
so is x+t for t ∈ Z, i.e., adding a constant to all variables preserves satisfiability.

Proof. All constraints are bounds on differences of variables, and the differences
don’t change when adding a constant to all variables.

Corollary 3. If Si,t is the set of solutions to a VBF DBM such that xi = t,
then Si,t = {x+ t | x ∈ Si,0}.

Given a DBM with variable bounds, we can construct a new VBF system
by adding a new variable x0 and converting all variable bounds `i ≤ xi ≤ ui to
difference bound constraints `i ≤ xi − x0 ≤ ui. Clearly (x1, . . . xn) is a solution
to the original system iff (0, x1, . . . xn) is a solution to the new system. By the
above lemma, the new system has a solution with x0 = 0 iff it has any solution.
Thus the original DBM with variable bounds is satisfiable iff the new VBF DBM
is. VBF DBMs are best understood by analyzing their potential graphs.

Definition 4. The potential graph of a DBM is a weighted directed graph over
vertex set [n] with an edge from i to j of weight cij for each (i, j, cij) ∈ E. The
weights may be negative and the graph may contain negative cycles.

Lemma 5. Let G = ([n], E) be the potential graph of a DBM. If G has a path
from vertex u to v of total weight W , then −xu + xv ≤ W for every solution x
to the DBM.

Corollary 6. If the graph has negative cycles, then no solution x exists.
If the graph has no negative cycles, then for all u, v ∈ [n], it holds that

−xu + xv ≤ δG(u, v). This is useful to define a normal form of the DBM.
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Definition 7. A path-closed DBM is one that is satisfiable and, for all u, v
such that there exists a path from u to v in the potential graph G, the bound on
−xu + xv exists and is equal to δG(u, v).

Clearly, any DBM can be brought to path-closed form by computing the
distances in the potential graph, and by Corollary 6, doing so does not change
the solution set. Moreover, the path-closed form has the following useful property.

Lemma 8 (DBM Projection Lemma). If a DBM is path-closed, then the
projection of its solution set onto a subset of variables is equal to the solution
set of the constraints involving only those variables.

It follows that the path-closed form is the tightest constraint system with
the same solution set as the original system, i.e., in a path-closed DBM there
exist solutions on the surface of every inequality, so no inequality can be further
tightened without changing the solution set. Moreover, if there is no constraint
on some −xi+xj then adding any upper bound on this changes the solution set.
Finally, the following is useful to compute a complete explicit solution.

Lemma 9. For any vertex u in the potential graph from which all other vertices
are reachable, the assignment xv = δG(u, v) satisfies the DBM.

Note that in this solution, xu = 0. We now define the new abstract domains.

Definition 10. A Strided DBM (SDBM) is a DBM with additional constraints

xi ≡ ri mod di i ∈ [n]

where all di, ri are in Z. When referring to such a system, Dlcm will denote
lcm(d1, . . . dn). Given an SDBM, we define the underlying DBM as the constraint
system without these congruence constraints.

Note that one may encode the lack of a congruence constraint as xi ≡ 0 mod 1.

Definition 11. A Harmonic SDBM (HSDBM) constraint system is an SDBM
where the congruence divisors are sorted and each one divides the next, i.e.,
d1 | d2 | · · · | dn.

3 Satisfiability

We start by reducing the SDBM satisfiability problem to a simpler form. Firstly,
let yi = xi − ri. Then we can see that xi ≡ ri mod di iff yi ≡ 0 mod di.
Furthermore, −xi+xj ≤ cij iff −yi+yj ≤ cij + ri− rj . Thus the original SDBM

xi ≡ ri mod di −xi + xj ≤ cij `i ≤ xi ≤ ui

is satisfiable iff the following system is:

yi ≡ 0 mod di − yi + yj ≤ cij + ri − rj `i − ri ≤ yi ≤ ui − ri.
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Thus we reduce satisfiability of any SDBM to the satisfiability of another SDBM
where all congruence constraints have remainder zero. We can further reduce
satisfiability of SDBMs with variable bounds to satisfiability of VBF SDBMs.
To do this, we generalize the DBM shifting lemma to SDBMs.

Lemma 12 (SDBM Shifting Lemma). If x is a solution to a VBF SDBM,
then so is x+ tDlcm for t ∈ Z.

Proof. By the DBM shifting lemma (Lemma 2), the inequality constraints con-
tinue to be satisfied. Since the scalar being added is a multiple of all the con-
gruence divisors, the congruence constraints also continue to be satisfied.

Corollary 13. For a given VBF SDBM with the congruence constraint on xn
being xn ≡ 0 mod Dlcm, let St be the set of solutions such that xn = t. Then
St = {x+ t | x ∈ S0} for t ∈ DlcmZ. (Of course, St = ∅ for non-congruent t).

We convert SDBMs to VBF form similarly to the procedure for DBMs. Let
C be an SDBM with variable bounds and all remainders zero. Now create a VBF
SDBM C ′ by adding a variable x0 and replacing the constant bounds `i ≤ xi ≤ ui
of C with inequalities `i ≤ xi−x0 ≤ ui. Then the set of solutions of C is equal to
the set of solutions of C ′ such that x0 = 0. Now by the above corollary, if we add
the constraint that x0 ≡ 0 mod Dlcm, then C ′ is satisfiable iff C is satisfiable.
Thus satisfiability of SDBMs with variable bounds can be efficiently reduced to
satisfiability of the following simpler class of SDBMs.

Definition 14. A constraint system of the form

xi ∈ diZ −xi + xj ≤ cij (i, j, cij) ∈ E

is called a simple SDBM. We sometimes refer to di as the stride of the variable
xi. When the system satisfies d1 | · · · | dn, we call it a simple HSDBM.

3.1 GCD-Tightening constraints

If a DBM is unsatisfiable, repeatedly applying the following inference rule will
produce a contradiction eventually.

−xi + xj ≤ cij ∧ −xj + xk ≤ cjk ⇒ −xi + xk ≤ cij + cjk (path inference rule)

This is because if the DBM is unsatisfiable then a negative cycle exists, and in
that case, repeatedly applying the above leads to an inequality of the form 0 ≤ c
for some negative c. In an SDBM, if the underlying DBM is unsatisfiable then
the above is true. However, it is possible for an unsatisfiable SDBM to have its
underlying DBM be satisfiable. Consider the following example:

x, y ∈ 2Z 1 ≤ x− y ≤ 1

The inequalities on their own are clearly satisfiable over the integers. However,
because both x and y are even, x − y cannot be 1 as required by the above
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system. Due to the congruence constraints, x − y ≤ 1 implies x − y ≤ 0 and
similarly 1 ≤ x− y implies 2 ≤ x− y, so the system is unsatisfiable. In general,
by Bézout’s lemma, when x ∈ aZ, y ∈ bZ, then x− y ∈ gcd(a, b)Z. Thus we can
always tighten bounds to a multiple of the GCD, leading to a new inference rule:

−xi + xj ≤ cij =⇒ −xi + xj ≤ bcijcgcd(di,dj) (GCD-tightening rule)

We use the above to define a GCD-tight SDBM.

Definition 15. A GCD-tight SDBM is one where, for all i, j ∈ [n], we have
cij | gcd(di, dj).

These two rules are still not sufficient to determine if an SDBM is satisfi-
able. The following system is GCD-tight, path-closed, and the inequalities are
satisfiable over integers, but the system as a whole is unsatisfiable.

x ≡ 0 mod 4 · 5 0 ≤ y − x ≤ 5

y ≡ 0 mod 5 · 7 20 ≤ x− z ≤ 24 (1)
z ≡ 0 mod 4 · 7 21 ≤ y − z ≤ 28

To see that it is unsatisfiable, reparameterize the solution as (c+a, c+ b, c); this
vector is a solution to the congruences iff

c ≡ a mod 4 · 5 c ≡ b mod 5 · 7 c ≡ 0 mod 4 · 7

which by the general Chinese remainder theorem [42] has solutions iff

a ≡ b mod 5 a ≡ 0 mod 4 b ≡ 0 mod 7.

Since the solution is of the form (a, b, 0)+c, it satisfies the inequalities iff (a, b, 0)
does, by Lemma 2. Thus the inequalities hold iff

0 ≤ b− a ≤ 5 20 ≤ a ≤ 24 21 ≤ b ≤ 28.

Due to the congruence constraints we have a ∈ {20, 24}, b ∈ {21, 28}, and b−a ∈
{0, 5}, which cannot be satisfied simultaneously, so the SDBM is unsatisfiable.
For the case of HSDBMs however, path-closure and GCD-tightening suffice.

3.2 Satisfiability for HSDBMs in O(n4) time

By the earlier discussion, we can assume that the given HSDBM is simple. In this
case, path-closure and GCD-tightening are sufficient to determine satisfiability.
To show this, we prove a projection lemma for HSDBMs; while the general
projection lemma for DBMs (Lemma 8) does not apply to HSDBMs, it does
hold when the subset of variables chosen forms a suffix. We will call an HSDBM
path-closed when its underlying DBM is path-closed.

Lemma 16. Let H be a path-closed, GCD-tight VBF HSDBM. If Sk:n is the
projection of the solution set of H onto xk, . . . xn, then Sk:n is equal to the set of
solutions to the inequalities and congruence constraints involving only xk, . . . xn.
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Proof. Suppose (pk+1, . . . pn) ∈ Sk+1:n. We show that there exists a pk such
that (pk, . . . pn) ∈ Sk:n. By substituting pk+1, . . . pn into the system, we obtain
bounds of the form pi − cki ≤ xk ≤ pi + cik for k < i ≤ n on xk when the
corresponding inequalities exist. If none of the lower bounds exist or none of the
upper bounds exist, then we can definitely find a multiple of dk satisfying these
bounds to assign to xk.

Otherwise, if at least one upper bound and one lower bound is produced,
then the set of xk satisfying the inequalities is [maxi(pi − cki),mini(pi + cik)],
which is of the form [pi− cki, pj + cjk] for some i, j ∈ {k+1, . . . n}. This interval
is non-empty by the DBM projection lemma (Lemma 8).

Now note that pi ∈ diZ ⊆ dkZ by the harmonic property and similarly
pj ∈ dkZ. Also, cki ∈ gcd(dk, di)Z = dkZ by path-closure and the harmonic
property; similarly, cjk ∈ dkZ. So both the endpoints lie in dkZ and therefore it
certainly contains a multiple of dk. Repeating this, we can extend any point in
Sk:n into a point in S1:n, a full solution to the whole system.

Corollary 17. A path-closed GCD-tight HSDBM is satisfiable.

Proof. Sn:n = dnZ 6= ∅ is the projection of the solution set onto xn.

This forms the basis of the SolveHSDBM algorithm in Figure 1 to decide
the satisfiability of HSDBMs: first, obtain the path-closure of the inequalities by
running the Floyd-Warshall algorithm [16] on the potential graph, then GCD-
tighten all inequalities, and repeat these two steps until a fixpoint or contra-
diction is reached, at which point we know whether the system is satisfiable.

1: function SolveHSDBM(E, d)
2: Path-close inequalities E
3: while (E, d) not a fixpoint do
4: Set every cij in E to
5: bcijcgcd(di,dj)
6: if negative cycles in E then
7: return ⊥
8: Compute all pairs of distances
9: Set every cuv to δE(u, v)
10: return SAT

1: function SolveSDBM(E, d)
2: if no integral solution to E then
3: return ⊥
4: p← an integral solution to E
5: Dlcm ← lcm(d1, . . . dn)
6: `← p− nDlcm

7: u← p+ nDlcm

8: for i ∈ [n] do ui ← buicdi
9: while fixpoint not reached do
10: for (i, j, cij) ∈ E do
11: if uj < bui + cijcdj then
12: uj ← bui + cijcdj
13: if uj < `j then return ⊥
14: return u

Fig. 1. HSDBM and SDBM satisfiability.

Lemma 18. Let G = (V,E) be a transitively closed graph with no negative
cycles, i.e. whenever there is a path from u to v, there is an edge from u to v



8 Pitchanathan et al.

of weight δG(u, v). Let U ⊆ V . Now let F be a copy of E in which we have
decreased the weights of some edges that go from one vertex in U to another in
U . Finally, let H = (V, F ).

Suppose that H has no negative cycles. Then for any vertices u and v in U
with a path from u to v, there is a shortest path from u to v that never leaves U .

Proof. Let p = (p1, . . . pk) be the vertices of a path starting and ending in U and
with all the intermediate vertices lying outside U . Let W be the weight of p in
H and let c be the weight of the edge from p1 to pk in H. Then W ≥ δG(p1, pk)
because only edges that stay within U decreased, and δG(p1, pk) ≥ c because
the edge in G had weight equal to δG(p1, pk) and it can only have decreased or
stayed the same in H. Thus the path p cannot have weight less than the weight
of the direct edge in H.

For a general path that goes in and out of U repeatedly, we can always replace
all sections of the path that go outside and come back in with the direct edges
that stay in U , to obtain a path within U whose weight is at most that of the
original path. Thus for any start and end point in U , the shortest path that
stays in U has weight equal to the shortest path in the entire graph H.

Theorem 19. SolveHSDBM in Figure 1 terminates in O(n4) time.

Proof. We will view the algorithm as operating on the potential graph; all mod-
ifications to cij then become modifications to the edge weights. We will show
that at most n−1 repetitions are needed for fixpoint. We prove that after the ith
application of GCD tightening, all edges between vertices in {vi, . . . vn} will stay
multiples of di for the rest of the algorithm. We prove this by induction. The
base case for i = 1 is true since when all edges are multiples of d1, path-closure
cannot change this divisibility, and GCD-tightening will not change this either.

Now assume it to be true for i; we will show it for i + 1. The i + 1-th ap-
plication of GCD tightening only decreases edge weights between vertices in
U = {vi+1, . . . vn}, by the induction hypothesis. Now we want to analyze how
path closure affects the edge weights in the subgraph induced by U . After tight-
ening, all edges in the subgraph are multiples of di+1, so distances between nodes
in the subgraph are also multiples of di+1 by Lemma 18. Thus path closure does
not affect divisibility at this step. Therefore, subsequent GCD-tightening does
not affect it either. Repeated applications of these preserve the property.

Thus the nth application of GCD tightening does nothing since there are no
edges in the graph induced on the single vertex vn for i = n. Therefore, neither
does the subsequent application of path-closure. Thus, fixpoint is achieved after
n− 1 runs of GCD-tightening and path-closure.

3.3 Satisfiability for SDBMs in O(nmDlcm) time

Extending work by Lagarias [32], it can be shown that the SDBM satisfiabil-
ity problem is NP-hard (see the appendix of the extended paper [43]) so no
polynomial-time algorithm is likely to exist. In program analysis applications,
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the inequality coefficients can be large, so we would like an algorithm that runs
in polynomial time in the representation size of these coefficients. On the other
hand, in these applications, the congruence divisors are typically small, so we
are willing to let the algorithm be polynomial in the values of these, i.e., pseudo-
polynomial in these. In fact, these divisors typically share many common factors,
so that their LCM is not much bigger than the divisors. We present an algorithm
that is pseudo-linear in the LCM.

The intuition for the algorithm comes from the following extensions of our
inference rules to upper bounds xi ≤ ui on the variables.

xi ≤ ui =⇒ xi ≤ buicdi

xi ≤ ui ∧ −xi + xj ≤ cij =⇒ xj ≤ ui + cij

Suppose we have an SDBM with all variables bounds present and we keep
applying these rules. Then we either obtain a contradiction ui < `i, or a fixpoint.
At the fixpoint it holds that ui ∈ diZ and moreover uj ≤ ui + cij . So in fact,
u becomes a solution to the SDBM. Each successful application of an inference
rule reduces the gap ui− `i between some upper bound and lower bound. If this
difference becomes negative, a contradiction is obtained and the algorithm halts.

So the worst-case runtime of this method depends on the sum of the gaps
ui − `i between the upper bounds and the lower bounds, which could naively
be exponential in the representation size of the constraint system. To avoid this
worst-case scenario, we reduce the satisfiability of SDBMs to the satisfiability of
SDBMs with variable bounds where the gap between the upper and lower bound
is at most 2nDlcm for each variable.

For a matrix A, let MASD(A) be the maximum absolute determinant among
all square submatrices of A. A standard fact [15] in the theory of integer pro-
gramming is that if P ⊆ Rn is a polyhedron, P ∩ Zn is non-empty, and x is in
P , then there exists a point y in P ∩ Zn such that ‖x − y‖ ≤ nMASD(A). We
slightly generalize this to obtain the following lemma.

Lemma 20. Let S = {x ∈ Rn | Ax ≤ b} be a non-empty polyhedron. Let L
be the set of solutions to some single-variable congruence constraints such that
S ∩L 6= ∅, and let Dlcm be the LCM of the congruence divisors of L. Let y ∈ S.
Then there exists a solution x ∈ S ∩ L such that ‖x− y‖∞ ≤ nDlcm MASD(A).

Moreover, we show that MASD(A) = 1 for DBMs, making the bound nDlcm.

Lemma 21. Let A be an m× n matrix where each row has exactly one +1 and
one −1. Then MASD(A) = 1.

We defer the proofs to the appendix of the paper’s extended version [43].
These lemmas allow to solve an SDBM by first finding any integral solution p
to the inequalities and adding constant bounds on the variables to lie within a
box of side length 2nDlcm centered at p, then applying the above inference rules
until reaching a contradiction or fixpoint.

In SolveSDBM in Figure 1, we first GCD-tighten all the upper bounds and
then look for opportunities to apply the path-closure inference rule to the upper
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bounds, by checking each difference bound. Whenever an upper bound decreases
due to path-closure, we immediately apply the GCD-tightening rule to it. It takes
O(m) time to look over all edges. Since each variable’s upper and lower bounds
differ by 2nDlcm, there can be at most 2n2Dlcm steps of such tightening, for an
overall runtime of O(n2mDlcm).

We have to process the edge (i, j, cij) once in the beginning. After that, we
only have to process it again when the RHS of the if-condition on line 11 changes,
i.e., only when ui decreases. So we can replace lines 9-13 with the following.
1: dirty← [n]
2: while dirty 6= ∅ do
3: Pick i ∈ dirty

4: Remove i from dirty

5: for (i, j, cij) ∈ E do
6: if uj < bui + cijcdj then uj ← bui + cijcdj
7: if uj < `j then return ⊥
8: Add j to dirty

Here ui can decrease at most 2nDlcm times since after that it will go below the
lower bound `i and produce a contradiction. Each time ui decreases, we check all
edges that go out from i, as these are the edges that might use the reduced value
of ui. Thus if oi is the number of edges leaving i, then the time complexity of this
more careful implementation is

∑
iO(nDlcmoi) = O(nDlcmm) since

∑
i oi = m.

4 HSDBM Normalization

We consider normalization for satisfiable systems; if a system is unsatisfiable
we normalize it by setting it to some canonical unsatisfiable system. We first
normalize the inequalities and then the congruence constraints.

Definition 22. An inequality-normalized (H)SDBM is one where for any bound
−xi + xj ≤ c, if it holds in the solution set that −xi + xj ≤ d, then c ≤ d, i.e.
the bound in the system is the tightest valid bound.

Note that any two SDBMs with the same solution sets will have the same
normalized inequalities, since this depends only on the solution set and not on
the form of the initial constraint system. The above definition is equivalent to
saying that every bound −xi + xj ≤ c has a solution that makes it tight, and
whenever a bound does not exist that expression can take arbitrarily large values
in the solution set. Also, an inequality-normalized system is always path-closed
and GCD-tight since no such tightening inference rules can decrease any bound.

We previously showed that path-closure and GCD-tightening are not suf-
ficient to check satisfiability of SDBMs. Thus, we do not expect these to be
sufficient for inequality normalization either. One might hope that it is enough
for HSDBMs, but in fact it is not the case either. Consider the following example.

−1 ≤ x− y ≤ 1 −1 ≤ x− w ≤ 0 0 ≤ x− z ≤ 1 x, y ∈ Z
0 ≤ w − z ≤ 2 −1 ≤ y − w ≤ 0 0 ≤ y − z ≤ 1 z, w ∈ 2Z
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It is obviously GCD-tight and path-closed. But all constraints are not as tight
as possible. Note that w is either z or z+2. If w = z then x−z = x−w = 0, and
similarly y−z = 0, implying x−y = 0. Otherwise w = z+2, then x−w = x−z = 1
and y − z = 1, so x − y = 0 again, yielding tighter inequalities 0 ≤ x − y ≤ 0.
Therefore, we need to do more for inequality normalization.

First, let us consider variable-bound-free systems. Suppose the system has
an inequality −xi + xj ≤ c and we want to check if replacing it by −xi + xj ≤ b
for b < c excludes any solutions. This is equivalent to asking if there are any
solutions with b+1 ≤ −xi+xj ≤ c, which is a single satisfiability check. We can
thus binary search over the values of b to find the minimum valid one, to obtain
the tightest form of the inequality. We now establish a bound on the range of
such b values over which we have to search.

By the projection lemma (Lemma 8), path-closing the underlying DBM
brings it to normal form. Therefore every difference bound −xi+xj ≤ cij has an
integral point y satisfying all the inequalities and such that −yi + yj = cij . By
Lemma 20, there exists a solution z to the whole system with zj ≥ cij − nDlcm
and zi ≤ cij + nDlcm, so that −zi + zj ≥ cij − 2nDlcm. Therefore, the tightest
version of the inequality has a bound that is tighter by at most 2nDlcm. The
binary search then takes at most 3+ log(nDlcm) steps. Inequality normalization
thus takes at most m(3 + log(nDlcm)) emptiness checks.

Now consider systems with variable bounds, still with remainder zero con-
gruence constraints. Path-closure and GCD-tightening are sufficient to normalize
these, by converting them to VBF form and applying the following lemma.

Lemma 23. If an HSDBM is path-closed and GCD-tight then all inequalities
involving xn are tight. If a bound on −xi + xn is missing then −xi + xn is
unbounded in that direction, and similarly for bounds on −xn + xi.

Proof. First, we show it for bounds of the form −xn+xi ≤ cni. Suppose all such
bounds exist. Then the point with xn = 0 and xi = cni for i < n is a solution.
By GCD-tightening and the harmonic property, it satisfies the congruences. By
path-closure, we have cnj ≤ cni + cij , so it satisfies the inequalities.

Now consider the case where all bounds do not exist. Let R be the set of
variables that have a bound on −xn + xi and let R be its complement. Set
xi = cni as before, for variables in R, except xn which we set to zero. Now we
find a way to fill in the values of xj in R. Note that there can be no bound of the
form −xi + xj ≤ cij for xi ∈ R, xj ∈ R because then by path-closure we would
have a bound −xn + xj ≤ cni + cij which contradicts xj ∈ R.

Thus, assigning values to variables in R can impose lower bounds on variables
in R, but not upper bounds. Since the whole HSDBM is non-empty we can find
a solution y to the subsystem of constraints that only involve variables in R.
Moreover, t + y is a solution for any real t ∈ DRZ where DR is the LCM of
the congruence divisors of variables in R. By making t sufficiently large, t + y
satisfies the lower bounds imposed by substituting values for R variables. Thus
we have a solution making all the bounds cni tight. Also, by increasing t we can
make the variables in R arbitrarily large so these are unbounded above.



12 Pitchanathan et al.

To prove the case of bounds on −xi + xn, negate all the variables so that
bounds on −xn + xi become bounds on −xi + xn and vice versa. Now we can
apply the same proof as above.

Therefore, to normalize a satisfiable HSDBM with variable bounds, we:

1. Convert the system into VBF form,
2. Bring the converted system into path-closed and GCD-tightened form,
3. Convert the system back to a form with variable bounds, and
4. Binary search on the remaining inequalities to normalize them.

If the system was not satisfiable, we would find out at step 2, at which point we
can normalize the system by setting it to some canonical unsatisfiable HSDBM.

Let us now consider how to congruence-normalize simple HSDBMs; in this
setting we require that the normal form’s congruence constraints have remainder
zero.

Definition 24. A congruence-normalized VBF HSDBM where the congruence
constraint system implies all other valid congruence constraint systems for that
solution set, i.e., an HSDBM with congruence divisors d∗1, . . . d∗n is congruence-
normalized if for all HSDBMs with the same solution set having congruence
divisors say d1, . . . dn, it holds that each di | d∗i .

Note that the above definition depends only on the solution set of a system,
and so the normalized congruence system of any two systems having the same
solution set will be the same. In a simple HSDBM, xn can always take all values in
dnZ by the shifting lemma (Lemma 12), so any system with the same solution set
will have the same congruence dn for xn. Therefore, d∗n = dn. We now normalize
the remaining congruences iteratively, starting from xn−1 and going downwards.
Suppose that we already computed d∗i+1, . . . d

∗
n and we want to compute d∗i .

Note that for any valid congruence system it holds that di | di+1 | d∗i+1 by
the harmonic property and congruence normalization. Thus d∗i is the maximum
of all di | d∗i+1 such that xi ∈ diZ holds in the solution set. By the projection
lemma (Lemma 16), we can reduce this to finding the largest possible divisor for
x1 in a given constraint system with divisors d1, . . . dn. As shown above we only
need to consider divisors m | d2. For it to be a valid divisor, it also needs to not
be so dense as to allow additional solutions; we ensure this by mandating that
d1 | m. Note that the greatest divisor cannot be a non-multiple of d1 anyway,
since if m is a valid congruence for x1 then so is lcm(d1,m).

Theorem 25. Let H be an inequality-normalized simple HSDBM. Let L be the
set of m ∈ N such that d1 | m | d2 and for any solution x of H, it holds that
x1 ∈ mZ. We are interested in the sparsest possible congruence divisor, maxL.
Let g be the GCD of all ci1 and c1i, and let q = gcd(g, d2).

Then maxL is either d1 or q. Moreover, it is q iff a specific other HSDBM
H ′ is unsatisfiable, where the constraint system H ′ can be computed in linear
time from the system H.
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Proof. We first show that for any r ∈ L, r | g. Suppose not, then without loss of
generality, r does not divide some ci1. Since the system is inequality normalized,
it has some solution satisfying x1 = xi + ci1. But since xi ∈ diZ ⊆ rZ and
c1i /∈ rZ, we have x1 /∈ rZ, so r /∈ L which is a contradiction. So this case is
impossible and we have r | g. Since r | d2, we have r | gcd(g, d2) = q. Thus,
maxL | q. If q = d1, we are done and maxL = d1.

Otherwise, let q 6= d1. We now show that either q | maxL, implying maxL =
q, or maxL = d1. Let S2:n be the projection of the solution set onto x2, . . . xn.
For now, assume that all constraints in the system exist. Then every assignment
(p2, . . . pn) ∈ S2:n implies constraints of the form pi− c1i ≤ x1 ≤ pi + ci1. So the
set of possible x1 values for this assignment is

⋂n
i=2[pi− c1i, pi + ci1]∩ d1Z. This

set is non-empty by the definition of S2:n. Since q | d2 | pi for all i ≥ 2 and q
divides all the coefficients c1i and ci1, all interval endpoints are multiples of q.
Therefore the endpoints of the intersection are also multiples of q. Since d1 | q, if
the intersection contains more than one element then it definitely contains two
adjacent multiples of d1, implying maxL = d1. Otherwise, if the intersection
contains exactly one element, that element is surely a multiple of q.

Thus, q | maxL if for all points in S2:n, the intersection of the intervals
is a singleton. Otherwise, maxL = d1. The intersection of some intervals is a
singleton iff the right endpoint of some interval equals the left endpoint of some
interval, possibly the same one. So we have to check whether, for every valid
assignment in S2:n, some two intervals [xi − c1i, xi + ci1] and [xj − c1j , xj + cj1]
intersect only at their endpoints, i.e., there always exist some i, j ∈ {2, . . . n} such
that xi + ci1 = xj − c1j , i.e., −xj + xi = ci1 + c1j . Note that by path closure, if
x2, . . . xn ∈ S2:n, then it already holds that −xj+xi ≤ cji ≤ cj1+c1i. So it is only
left to check whether ∀x2, . . . xn ∈ S2:n, ∃i, j ∈ {2, . . . n}, −xj + xi ≥ cj1 + c1i.
This is equivalent to @x2, . . . xn ∈ S2:n, ∀i, j ∈ {2, . . . n}, −xj+xi < cj1+c1i, by
logically negating twice. The strict inequality is equivalent to the constraint that
−xj+xi ≤ cj1+c1i−1 since all variables are integers. By the HSDBM projection
lemma (Lemma 16), a vector belongs to S2:n iff it satisfies the constraints on
those variables in the HSDBM. Thus the condition above can be checked using
a single HSDBM satisfiability check.

If some of the c1i or ci1 bounds did not exist then the corresponding intervals
in the intersection would have ranged till infinity on that side. Still, the same
conclusion holds: maxL 6= d1 iff the intersection is a singleton, meaning that
some two finite endpoints have to coincide, and the rest of the proof proceeds
the same way. Whenever some c1i or ci1 does not exist we simply do not add
any of the bounds in the constructed system that depend on that bound.

Generalizing to HSDBMs with variable bounds. When variable bounds
exist, it is possible for a variable to take only a single value, in which case any
congruence divisor is valid and the sparsest congruence constraint is not well-
defined. In this case, in inequality-normalized form, the variable will have upper
and lower bounds equal, so we can immediately detect this case by looking
at the variable bounds. When this happens, we first eliminate these variables
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by substituting in the single value that they can take. We then compute the
congruence normalization of the resulting system, then add back the eliminated
variables and give them some canonical congruence constraint that preserves the
harmonic property. For example, use x1 ≡ 0 mod 1 if it is the first variable and
use the divisor of the previous variable otherwise.

We now consider congruence normalization of systems with variable bounds
where every variable takes at least two values.

Lemma 26. Let C be an SDBM with variable bounds, where each variable takes
at least two values. Let C ′ be the system converted into VBF form with the added
variable xn+1 having divisor D, with Dlcm | D. Let e1, . . . en be the normalized
congruence divisors of the converted system, and let d∗1, . . . d∗n be the sparsest
congruences for the original system. Then ∀i, ei = gcd(D, d∗i ).

Proof. Let S be the set of values xi takes in C and let T be the set of values it
takes in C ′. Then T = {x+tD | x ∈ S, t ∈ Z} by the shifting lemma (Lemma 12).
The sparsest congruence divisor for S is the GCD of all elements in S, which we
call g. Similarly, the sparsest congruence divisor for T is the GCD of all elements
in T , which is equal to gcd(g,D) since for any a, gcdt∈Z(a+tD) = gcd(a,D).

Lemma 27. In an HSDBM with variable bounds where xn takes at least two
possible values, the sparsest possible congruence divisor for xn is dn.

Proof. Convert the system to VBF form. Let xn+1 be the variable added for the
conversion. By the projection lemma (Lemma 16), the set of valid values of these
two variables is the set of constraints involving only them. The set of valid values
of xn in the original system is the set of values of xn in the converted system
with xn+1 = 0, and is therefore the set of multiples of dn within the variable
bounds of xn. Thus the sparsest congruence divisor for xn is still dn.

We now show how to compute the sparsest congruence constraints.

Theorem 28. Given an HSDBM with variable bounds where every variable
takes at least two values, the sparsest congruence constraints are equal to sparsest
constraints for the system after converting to VBF form.

Proof. We convert the system to VBF form by adding a variable xn+1 with
congruence divisor dn+1 := dn. We then compute its congruence normalization
to obtain divisors e1 | · · · | en | en+1. Let d∗1 | · · · | d∗n be the true sparsest
congruences for the input system. Then ei = gcd(dn+1, d

∗
i ) by Lemma 26 and

dn+1 = dn = d∗n by Lemma 27. Hence ei = gcd(d∗n, d
∗
i ) = d∗i since d∗i | d∗n.

Generalizing to arbitrary congruence constraints. For HSDBMs with
arbitrary congruence constraints, we can find any solution and shift the system
so that the origin becomes a solution. Then all valid congruence constraints have
remainder zero since there is a solution at the origin. Computing the sparsest
possible congruence for this system and performing the inverse shift therefore
gives us the sparsest possible congruence for the original system.
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5 Operations for Abstract Interpretation

We introduce intersection, equality, inclusion, and join operations for (H)SDBMs,
completing the set of operations typically required for abstract interpretation.

Intersection. To intersect, we just take the tighter of the bounds on each
−xi + xj and of the variable bounds.

Equality. We check if two HSDBMs have equal solution sets by checking if their
normal forms are equal. For simple SDBMs, we first check if their normalized
inequalities are equal, then compare congruences: given an SDBM C, D ∈ N
such that all di | D, and r ∈ {1, . . . D − 1}, there exists a solution with xi ≡ r
mod D iff there exists one with xi = r, by the shifting lemma (Lemma 12).

Now given two VBF SDBMs, let D be the LCM of their congruence divisors.
Checking which values modulo D each variable can take in each system takes
2nD satisfiability checks. If both are equal and the normalized inequalities are
also equal then both systems have equal solution sets. Otherwise, they do not.

Now given two SDBMs with variable bounds, we again set D to be the LCM
of the congruence divisors and inequality normalize both, then convert them to
VBF form using the same congruence divisor D for the added variable. The two
original systems are equivalent iff the converted systems are, and we know how
to check equality of solution sets for VBF SDBMs.

Inclusion. We can check for inclusion using intersection and equality checks
since for sets A and B, we have A ⊆ B iff A ∩B = A.

Join. Given two SDBMs in normal form, the system with the smallest solution
set that encompasses both the inputs’ solution sets is the system that takes the
looser of the two bounds on each −xi + xj . When one of the systems has no
bound, the result should have no bound either. This follows from Definition 22.

For the congruences of the joined system, we compute the congruence nor-
malization of both the input systems and for each variable, take the sparsest
congruence constraints that encompass both. Say the two constraints are x ≡ r1
mod q1 and x ≡ r2 mod q2. Let p be any solution to these two constraints, then
the two constraints are equivalent to x− p ≡ 0 mod q1 and x− p ≡ 0 mod q2
respectively. The sparsest constraint that holds for x− p satisfying either one of
these constraints is x− p ≡ 0 mod gcd(q1, q2), i.e., x ≡ p mod gcd(q1, q2).

Finding an equivalent simple representation of an SDBM. It may some-
times be useful to find a simple representation of an SDBM, if one exists. A sat-
isfiable SDBM C with variable bounds can never have the same solution set as
a VBF SDBM C ′, because by the shifting lemma (Lemma 12), for any solution
x of C ′, there exists a constant D such that x + kD is also a solution for any
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integer k. Hence the solution set of C ′ does not satisfy any variable bounds and
so is different from that of C.

A VBF SDBM C with non-zero remainders admits a simple SDBM represen-
tation if there is a way to replace its congruence constraints with zero-remainder
constraints while preserving the same solution set. This can be determined by
computing the possible remainders of all variables modulo Dlcm. By the shifting
lemma, a remainder xi ≡ ri mod Dlcm is possible iff there is a solution with
xi = ri, which amounts to a satisfiability check.

Let gi be the GCD of all possible remainders obtained above and Dlcm. By
the shifting lemma, gi is the GCD of all valid values of xi. To ensure that our
new congruence constraint for xi does not invalidate any solutions of the original
system, it is necessary and sufficient that the new divisor be a divisor of gi.

To disallow any extraneous solutions, we make the congruence constraint as
sparse as possible. Consider the system C ′ with congruence constraints xi ≡ 0
mod gi and the inequality constraints of C. C can be represented by a simple
SDBM with the same solution set iff C and C ′ have the same solution set, which
we can check as described above.

6 Empirical Study

The goal of this study is to demonstrate the suitability of SDBM for program
representation and analysis. To this end, we instrumented several optimizing
compilers that use polyhedral domains internally and analyzed those domains.
Evaluating the compilation time or the run time of the compiled program is
beyond the scope of the study as it requires additional engineering to compete
with highly-optimized Presburger arithmetic libraries [50,44].

6.1 Methodology

We instrumented the following compilation and analysis projects.

– The MLIR compiler infrastructure [33], widely used in production to support
domains ranging from machine learning compilers to hardware synthesis.
We used MLIR version llvmorg-18-init-16246-g4daea501c4fc (Jan 5,
2024) and compiled the test suite provided with the project using ninja
check-mlir. We collected statistics from 2176 compiler invocations. Some
tests feature multiple invocations.

– The Polygeist CUDA-to-OpenMP cross-compiler [40] based on the archived
artifact [41]. We compiled 17 benchmarks from the CUDA subset of the Ro-
dinia suite [10] accepted by Polygeist with the same 7 configurations as [41].

– The PPCG polyhedral compiler [51] version 0.09.1 (Apr 2, 2023, most re-
cent release). We compiled 30 benchmarks from the Polybench/C benchmark
suite version 4.2.1 [45] using ppcg –target=c –openmp –tile to enable
autoscheduling, parallelization and tiling.
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MLIR and MLIR-based Polygeist were instrumented to intercept the cre-
ation of affine expressions and sets bounded by such expressions as well as (in-
teger) emptiness checks of these sets. For each expression and set, we verified
whether it can be expressed as a (H)SDBM. We say that an expression can be
In MLIR, unique expressions are reused so that the collected statistics reflect
unique SDBM objects that existed throughout the execution of the test. PPCG,
and its underlying isl library [50], were instrumented to check if the following
objects fit (H)SDBM: affine constraints, convex sets, unions thereof and unions
of non-convex sets in multiple vector spaces. We collected all such objects at
several moments in the compilation process: after constructing the initial rep-
resentation, after performing dependence analysis, before and after scheduling,
and just before final code generation.

6.2 Prevalence of SDBMs

MLIR. Out of 2176 test cases, 1264 (58.1%) construct affine expressions through-
out their lifetime. The following analysis focuses only on those. Overall, 96.3% of
affine expressions and 95.6% of integer sets (we consider MLIR multidimensional
affine maps as such) can be represented using SDBM. 714 (56.5%) of the cases
use only SDBM expressions. In the remaining cases, 90.3%±15.94 of expressions
and 88.2%± 17.5 sets can be represented using SDBM.

45 of the test cases perform a total of 7695 emptiness checks. 6262 (81.4%) of
these are performed on HSDBM integer sets, and none on more general SDBMs.
22 (48.9%) test cases perform emptiness checks only on HSDBM. In the remain-
ing cases, 73.5%± 37.7 of the checks are performed on HSDBM sets.

These results suggest that SDBM is sufficient to represent a large fraction of
affine constructs appearing in a compiler infrastructure supporting polyhedral
compilation [31], machine learning compilers [34], high-level synthesis [54] and
other hardware design [21]. It is worth noting that the test suite covers rare
representational edge cases, so practical applications may have better coverage.
For example, many non-SDBM expressions are found in Affine dialect tests,
which exercise the full expressive power of (quasi-)affine expressions, including
divisions by parameters, huge coefficients, or expressions with hundreds of terms.

Some of the 17 compiled benchmarks consist of multiple translation units
processed separately, for a total of 39. Each one was compiled with 7 different
configurations, leading to the total of 273 test cases. Out of these, 266 (97.4%)
construct affine expressions and 50 (18.3%) perform emptiness checks.

Polygeist. 96.3% of the affine expressions and 95.6% of the integer sets fit the
SDBM domain. 185 (69.5%) cases use only SDBM constructs. The remaining
cases have 95%± 5.1 and 93.8%± 6.4 SDBM expressions and sets, respectively.

These test cases perform a total of 540 emptiness checks all of which can be
expressed using HSDBM. In Polygeist, emptiness checks are performed during

4 The µ± σ notation indicates the mean and standard deviation.
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dependence analysis. Since the benchmarks are originally written in CUDA, they
use only simple single-variable subscript expressions, leading to compatible i− j
expressions in dependence relations.

These results indicate that SDBM is suitable for end-to-end compilation,
even if a more expressive representation may be occasionally required. Note also
the higher ratio compared to the MLIR test suite.

PPCG. While none of the benchmarks can be completely processed using ex-
clusively SDBM, most steps of the compilation process are largely compatible.
Specifically, the initial representation of the program uses only SDBM for 25
(83.3%) programs, and the result of dependence analysis is representable for 26
(86.7%) programs. ILP-based affine scheduling does not match SDBM require-
ments for any of the programs since it extensively uses multi-variable expressions
through its use of the Farkas lemma [49]. On the other hand, the resulting sched-
ule can be expressed as a union of SDBM integer sets for 21 (70%) programs.
Using the hierarchical form of the schedule [52] instead of a flat union brings this
number up to 24 (80%). When applying loop tiling on a hierarchical schedule,
23 (76.7%) programs still use only SDBM with divisibility constraints associated
with tile sizes. Finally, code generation is expressible only for the one program,
durbin.c, as it produces linearized expressions of the form C · i + ii to recom-
bine loop indexes after tiling (such linearization was previously avoided in the
hierarchical schedule); durbin.c does not contain a tileable loop nest and only
accesses single-dimensional arrays with subscripts of the form i and i - j - C,
which are SDBM. We could also confirm our intuition that all SDBM expressions
are also HSDBM. This is due to congruences being introduced by tiling, which
uses the fixed factor of 32 by default. We verified this by disabling tiling, which
brought the number of supported test cases for flat schedule and code generation
to 21 (70%). Tile factors are typically chosen as powers of two or fractions of
the problem sizes, so they are likely to remain divisible.

Overall, across all stages and benchmarks, 85.6%± 21.6 of affine constraints
and 78.1%±37 sets are SDBM. This number ranges from 41.5%±14.3 constraints
for the ILP set to 99.8% ± 0.5 for dependency analysis, and from 10.8% ± 24.2
sets for code generation to 99.6% ± 1.1 for dependency analysis. These results
suggest that SDBM combined with structured affine representations such as
schedule trees may power a large part of a polyhedral compiler, for all stages
except ILP-based affine scheduling.

6.3 Applications to Translation Validation

We additionally used our instrumented version of MLIR5 to process three end-
to-end machine learning models as described in [5]. Specifically, we took the
following models (fetched on January 19, 2024).

– text_classification_v2 obtained from https://www.tensorflow.org/
lite/examples/text_classification/overview.

5 llvmorg-18-init-16246-g4daea501c4fc(Jan 5,2024), same for MLIR test suite.

https://www.tensorflow.org/lite/examples/text_classification/overview
https://www.tensorflow.org/lite/examples/text_classification/overview
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– MobileNet v3, variation “large-075-224-classification” obtained from https:
//www.kaggle.com/models/google/mobilenet-v3/frameworks/tfLite.

– SqueezeNet: https://www.kaggle.com/models/tensorflow/squeezenet.

We further converted these models from the original TFLite format into
the MLIR TOSA dialect using the TensorFlow tool flatbuffer_translate
–tflite-flatbuffer-to-mlir to yield a TFLite MLIR representation, as well
as tf-opt –tfl-to-tosa-pipeline to obtain TOSA.6 We do not run the mod-
els but (partially) compile them along the lines of [5] using the command: 7

mlir-opt --pass-pipeline=’builtin.module(func.func(tosa-optional-decompositions),
canonicalize, func.func(tosa-infer-shapes, tosa-make-broadcastable, tosa-to-linalg-named),
canonicalize, func.func(tosa-layerwise-constant-fold, tosa-make-broadcastable),
tosa-validate, func.func(tosa-to-linalg, tosa-to-arith, tosa-to-tensor),
linalg-fuse-elementwise-ops, one-shot-bufferize)’

We collected SDBM-related statistics from all three cases in Table 1. None of
the models required an emptiness check.

Table 1. SDBM is sufficient to represent most affine sets and expressions during the
partial compilation pipeline from TOSA to the bufferized Linalg dialect in MLIR.

Model Sets Expressions
Total SDBM Total SDBM

Text Classification 4099 4099 (100%) 9148 9148 (100%)
MobileNet 58876 52596 (89.3%) 208840 202110 (96.8%)
SqueezeNet 28131 27806 (98.8%) 96140 95490 (99.3%)

7 Related Work

The relevance of weakly relational domains for loop parallelization and opti-
mization is well established [1]. More recently, UTVPI approximations enabling
complex affine transformations (such as those enabled by PPCG in the empirical
evaluation) have also been identified [49]. But these techniques remain unaware
of congruence properties, missing optimization opportunities as a result [49].

6 Both were compiled from source: https://github.com/tensorflow/tensorflow
version ae7eb0931d2973095, which depends on a different version of MLIR, but
the textual representation of TOSA in both is compatible.

7 We noticed the existing flag tosa-to-linalg-pipeline does not produce any
code, so we reconstructed the MLIR pass pipeline from its source code in
mlir/lib/Conversion/TosaToLinalg/TosaToLinalgPass.cpp. Notable differences
with the previously reported pipeline include additional TOSA normalization passes
and the decomposition of the Standard MLIR dialect into the Arith and Tensor
dialects, as well as the recomposition of bufferization passes into a single one.

https://www.kaggle.com/models/google/mobilenet-v3/frameworks/tfLite
https://www.kaggle.com/models/google/mobilenet-v3/frameworks/tfLite
https://www.kaggle.com/models/tensorflow/squeezenet
https://github.com/tensorflow/tensorflow
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There is a rich literature on sub-polyhedral domains [22]. APRON8 [30] pro-
vides a reference implementation for many of these. See also ELINA9 [47] for
advanced algorithms and optimizations. Combinations of abstract domains are
popular in static analysis [17,14]. These aim at increasing precision by “cross-
fertilization” of analyses without the need for new abstract domains. Yet actual
intersections of sub-polyhedral domains received much less attention. Bygde sur-
veys some of these [9], the most closely related being the trapezoidal domain [36]
which combines lattices with intervals, forming a non-relational domain.

Considering SDBM algorithms themselves, our iterative approach to the sat-
isfiability problem is reminiscent of the dynamic all-pairs shortest paths [19] and
incremental closure algorithms [29]. Complexity results in this space relate to
the cubic upper bound of the Floyd-Warshall algorithm and do not contribute
to improving the complexity of the GCD tightening iterations.

The weak NP-completeness of TVPI has been established by Hochbaum and
Naor [28,26,27], together with a (pseudo-polynomial) integer linear programming
algorithm that is quadratic in the largest bound of the inequalities. Our SDBM
algorithm has lower complexity and also makes it pseudo-polynomial in the
congruence divisors instead. In compilation problems of interest, congruences
correspond to tile and vector sizes dictated by hardware parameters; they are
much smaller than bounds of the iteration spaces and arrays.

8 Conclusion

We introduced the Strided Difference Bound Matrix (SDBM) abstraction com-
bining two-variable inequalities with congruence constraints. We demonstrated
the prevalence of these across the compiler test suites of MLIR, Polygeist and
PPCG. We showed that the satisfiability of SDBM is NP-hard but also admits an
algorithm pseudo-linear in the LCM of the congruence divisors. We identified the
Harmonic SDBM (HSDBM) sub-case that commonly arises in compilation prob-
lems for deep learning and other areas. HSDBM satisfiability has a worst-case
complexity of O(n4), which is practical for uses in compilers and has the poten-
tial to accelerate verification tools based on more general Presburger arithmetic.
We gave an O(mn4 log(nDlcm)) algorithm for HSDBM normalization. Finally,
given a pair of normalized HSDBM, we showed linear-time algorithms to check
for equality and to perform the join operation. The design of a widening operator,
also necessary for abstract interpretation, is left for future work.
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