LoopOpt: Declarative Transformations Made Easy

Lorenzo Chelini
TU Eindhoven
l.chelini@tue.nl

Tobias Grosser
University of Edinburgh
tobias.grosser@ed.ac.uk

Abstract

Despite years of research, the optimization strategy of loop-
level optimization frameworks remains fragile when address-
ing modern and heterogeneous architectures. Furthermore,
optimizers act as an opaque operation, a black-box, to the
users, forcing them to tedious an error-prone manual opti-
mization if imprecise cost models are used. Current solutions,
to drive loop-level optimizers rely on pragmas or bake the
transformations recipes in the source code using imperative
embedded scripting. But, the optimization of programs via
a sequence of imperative directives is unlikely to solve this
problem fully as expressing optimization is still an error-
prone and time-consuming task for the users. The ideal solu-
tion would be a declarative approach that allows the users to
opt-in if the optimizer has made a poor optimization decision
but avoid baking the transformation script within a given
application or bind it to a particular loop nest. Based on
such an idea, we propose LoopOpt, an interactive tool that
enables users to design optimizations in partnership with
the compiler in a declarative way. Thus, our approach opens
the polyhedral black-box allowing users to design complex
optimizations sequences in a declarative way.

Keywords: Loop Tactics, Polyhedral model, Declarative Code
Optimization, Polly

ACM Reference Format:

Lorenzo Chelini, Martin Kong, Tobias Grosser, and Henk Corporaal.
2021. LoopOpt: Declarative Transformations Made Easy. In Proceed-
ings of 24th International Workshop on Software and Compilers for
Embedded Systems (SCOPES 21). ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3493229.3493301

(Mol

This work is licensed under a Creative Commons Attribution International 4.0 License.

SCOPES °21, November 1-2, 2021, Eindhoven, Netherlands
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9166-5/21/06.
https://doi.org/10.1145/3493229.3493301

Martin Kong
University of Oklahoma
mkong@ou.edu

Henk Corporaal
TU Eindhoven
h.corporaal@tue.nl

1 Introduction

As the hardware increases in complexity, compilers are be-
coming increasingly ineffective at generating efficient code
automatically. But even worse, compiler optimizers act as
black-boxes to the developers, being driven by one-size-fits-
all heuristics that can be affected and controlled by few com-
piler switches [1, 2]. As a result, if an imprecise cost model
is used, poor performance is achieved. Given a poor perfor-
mance code developers have two options to recover from
such a situation: 1) perform a tedious and error-prone man-
ual optimization; 2) look at the internal intricacies of the
optimizer and redesign the program optimization scheme.
Both solutions are not optimal. The former is likely to in-
cur a loss in productivity and portability, as a manually op-
timized code is tied to low-level and architecture-specific
details. The latter requires the developers to dig down the
optimizer’s internal machinery, which will likely require a
steep learning curve, as the internal program representation
of the optimizer is often disconnected from any syntactic
form. Semi-automatic approaches based on pragmas or im-
perative embedded scripting have been proposed as a solu-
tion [1, 5, 12, 15, 21]. But they fall short for the following
reasons: 1) They lack immediate feedback on transforma-
tion profitability. 2) The pragmas or the embedded scripts
are by nature tightly coupled with the code structure. As a
consequence, minor changes to the code require an update
on the transformation script, effectively reducing script com-
posability and reuse. 3) The syntax adopted by most of the
tools is biased to the internal representation of the optimizer
(i.e., beta prefixes in Clay [1]). As a consequence, express-
ing complicated loop optimization tends to be cumbersome
and restricted to few users. 4) Semi-automatic approaches
require the developers to annotate and inspect the source
code, which is a time consuming and error-prone task.

To overcome these limitations, we propose a declarative
transformation and interactive tool named LoopOpt. LoopOpt
eases the design and exploration of complex program trans-
formations by 1) providing immediate feedback on transfor-
mation profitability, targeting the memory subsystem, which
is known to be the bottleneck of today modern architectures.
2) Decoupling code structure from code optimization effec-
tively enabling composition and reuse of transformation
scripts. It comes with a concise syntax similar to pragmas

https://creativecommons.org/licenses/by/4.0/

SCOPES 21, November 1-2, 2021, Eindhoven, Netherlands

making the tool familiar to common compiler developers,
and not bias on the tool’s internal representation (i.e., beta
prefix in Clay).

We bring the following contributions:

e We revisit classical loop transformations (i.e., tiling)
in the light of a new declarative approach based on
matchers and builders, which ensures transformations
composability and reuse.

e We enable the search for the composition of program
transformations in a declarative way. LoopOpt allows
the users to describe loops and computational motif
declaratively and apply transformation recipes on top
of them.

e We evaluate our approach on a modern architecture,
showing that with our approach is possible to obtain
performance which closely match and sometimes over-
come the one of state-of-the-art polyhedral optimizers.

2 Motivating Example

Loop-optimizer frameworks provide state-of-the-art yet not
flawless automatic optimizations. To mitigate the problem,
semi-automatic approaches such as Clay [1], AlphaZ [21],
and Chill [5], emerged as a possible solution, allowing the
users to steer the optimizer. All these tools expose some
language to specify program transformations applicable to
loops. Although the loop transformations are abstracted to
their common names, the languages can be seen as impera-
tive in a sense that they require to specify which loops are
targeted using external tags or language-level annotations.
Consider how tiling a simple loop nest is expressed in Clay,
as shown in Listing 1. Each transformation directive starts
with a beta-prefix that identifies the loop it applies to, fol-
lowed by two target loop depths (where to place the tiles
loop and the points loop in the nest) and, finally, by the re-
quested tile size. Adding, for example, a time loop around
this transformation, or an initialization statement for C[i][]]
would break the transformation script immediately since
the beta-prefixes, or the loop depths or both would change.
Worse, the user must keep track of the transformation ef-
fects on the loop structure to spell subsequent transforma-
tions. With our approach, on the other hand, it is possible
to make the transformations declarative. Instead of binding
it to specific loops, we can bind it to a computational motif.
Thus the transformation recipe can be applied repeatedly to
the entire program without any user intervention. Besides,
our approach by providing a GUI, allows optimizations to
be nicely spelt and avoids the mental exercise of tracking
transformation effects. The inlined code below shows the
exact same transformation recipe of Listing 1 in LoopOpt.
pattern[C(i,j) += A(i,k) * B(k,j)]
tile(i,32), tile(j,32), tile(k,32)

The first part declaratively describes a computational mo-
tif to be located in the codebase, and it is introduced by the

Lorenzo Chelini, Martin Kong, Tobias Grosser, and Henk Corporaal

/* Clay

tile([0,0,01,1,1,32);

tile([0,0,0,01,3,2,32);

tile([0,0,0,0,0],5,3,32);
*/
for (int i = 0; 1 < N; i++)

for (int j = 0; j < N; j++)

for (int k = 0; k < N; ++k)
CLil[3] += alpha * A[iJ[k] * BLKkILjI;

Listing 1. Imperative tiling optimization for a GEMM state-
ment using Clay.

pattern keyword. We use Tensor Comprehensions (TC) syn-
tax to describe a computational motif, a slight variation of the
ubiquitous Einstein notation [17]. Each pattern directive is
lowered to a matcher. The second part of the tactic describes
how the motif should be optimized, in this case, using the
tile directive. Each directive, on the other hand, is lowered
to one or multiple builders. A more in-depth and formal de-
scription of the matchers, builders, and tactic syntax will be
given in Section 3.3 and Section 4.2. For now, we remark that
a given tactic is not bound to any loop structure and can be
repeatedly applied to the entire program. Besides, a tactic
does not require the user to annotate the source code, as our
pattern matching and rewriting framework automatically
locates (and rewrite) a specified computational motif.

3 Polyhedral Representation of Programs

After more than three decades of active research, the poly-
hedral model [7] has become the cornerstone to model and
transform loops in imperative program powering production
compilers such as GCC [16], LLVM [8], and IBM XL [3]. The
model applies to loop-based programs, referred to as SCoPs,
where loop bounds and array subscripts are affine functions
of surrounding loop iterations and fixed parameters.

3.1 Iteration domain and Memory Accesses

Individual statements are represented by the iteration do-
main, which assigns to each statement a symbolic name and
an integer vector in a k-dimensional space, where k is the
depth of the surrounding loops. Each point in such a vector
represents a particular statement instance. For example, the
iteration domain for the GEMM kernel reported in Listing 1
is {S1(i, j,k) | 0 < i, j,k < N} where N is a parameter. On
the other hand, memory accesses are expressed as piece-
wise quasi-affine functions, which map the iteration space
with the array space, whose coordinates are the values of
the accessed subscripts. For the statement S1 in our running
example, the accesses for the C reference are described as:
{S1(4, j) = Cread(i, j); S1(i, j) = Curite (i,) }-

3.2 Schedule Tree

The order in which the statement instances are executed is
defined by the schedule, which maps a point in the iteration
space with a point in the time space. Within the polyhedral

model, the schedule is represented as a tree [20], where each
node represents a partial schedule, and the order of loops and
statements is determined by the node parent-child relation.
The root of the tree is always a domain node, which encodes
the iteration domain. Below such node a combination of the
following nodes may exist: 1) band which defines the partial
schedule of one or multiple loops; 2) filter which restricts
the statement instances of the iteration domain; 3) sequence
which imposes an order among its children.

3.3 Declarative Loop Tactics

Our interactive tool builds upon Loop Tactics, a framework
to make modern constraint-based loop transformations as ac-
cessible as classical tree-based compiler transformations [4].
Loop Tactics introduces three main components: Schedule
tree matchers, access relation matchers, and tree builders.

Schedule tree Matchers and Builders A schedule tree '

matcher enables the declarative description of the sched-
ule subtree to match. Fundamentally, it replicates the node
type-based structure of the schedule tree with additional
filtering—via callback functions—and wildcarding capabili-
ties. For example, a matcher may check band permutability
if used to find tiling opportunities or outermost band par-
allelism if used for device mapping. Besides, it allows to
capture specific schedule nodes that serve as pointers into
the matched sub-tree. A builder uses captured nodes to im-
plement transformations.

Tree builders use a syntax similar to the schedule tree
matchers and enable declarative tree reconstruction. Loop
optimizations are carried out using builders.

Access relation matchers Access relation matchers al-
low the caller to identify memory accesses with certain prop-
erties in a union of relation. The matching mechanism oper-
ates through placeholders (placeholder and arrayPlaceho-
1der). A placeholder can match any affine expression of the
form w = k*1+c where k and c are coefficients while w and
are candidate patterns. As a simple example, Listing 2 shows
how we can detect and optimize a GEMM pattern (Listing 1).
Lines 15-16 locate the structural part of the GEMM. The in-
nermost band in line 16 further restricts the matching to only
the subtree that satisfies the callback “hasGemmPattern”,
which looks for a GEMM-like access pattern. A GEMM-like
access pattern must read from three different arrays (lines
7-9) and write to a single one (line 10). Besides, the index
permutation should satisfies the placeholder pattern [ij] —
[i.k][k.j]. Once the GEMM pattern has been matched, the
builder (Line 18-21) applies the tiling transformation by split-
ting the original band into two nested ones. The outermost
band having the tile loop schedule, while the innermost one
having the point loops schedule.

4 LoopOpt - Interactive Code Optimization

Figure 1 shows the building blocks of LoopOpt and the in-
teraction point with the users. Let us briefly describe the

SCOPES 21, November 1-2, 2021, Eindhoven, Netherlands

auto hasGemmPattern
{
auto _i, _j, _|
auto _A, _B arrayPlaceholder();
auto reads = /* get reads accesses */;
auto writes = /* get writes accesses */;
auto mRead = allOf(access(_C, _i, _j),
access(_A, _i, _k),
access(_B, _k, _j));
auto mWrite = allOf(access(_C, _i, _j));
return match(reads, mRead).size() 1 8&&
match(writes, mWrite).size() == 1;

= [&](schedule_node node)

k = placeholder();
C =

P—

3

auto matcher =
band (hasGemmPattern);

auto builder =
band([&]() { return tileSchedule(body, tileSizes); 1},

band([&]J() { return pointSchedule(body, tileSizes); 1},

subtree(body)));

Listing 2. Schedule tree and access relation matchers (Line
1 to 16) for the GEMM statement in Listing 1. A builder (Line
18 to 21) to applies the tiling transformation is also shown.

Source code -
Raising Tool
(PET)

l Schedule

Tactic

Loop Tactics
< (Scheduler)

l Schedule

CodeGen (isl)
Source code

Actor Feedback

% «>! GUI

i LoopGUI
Figure 1. LoopOpt basic blocks and interaction points with
the user. LoopOpt enables the specification of custom recipes
for given computational motifs. The user interacts with the
GUI only by entering a given transformation recipe (or tactic).
The system returns immediate feedback and generates the

transformed code on-demand.

internal machinery of LoopOpt. To start, the user interacts
only with the GUI (see Section 4.1). Once the user opens
a given application, we use the Polyhedral Extraction Tool
(PET [19]) as our raising tool to extract and model a SCoP in
the polyhedral model. From the SCoP, we obtain the sched-
ule tree, and we feed it to Loop Tactics. Loop Tactics lowers
each directive (Section 4.2) provided by the user to schedule
tree matchers and builders, and applies them to the extracted
tree. As a result, we obtain an optimized schedule that we
send back to ISL (Integer Set Library [18]) for code gen-
eration. At the end of this process, the user will visualize
how her directives optimized the original application. While
spelling the transformation recipe, the user can ask for per-
formance feedback. We provide two kinds of feedback: how
the memory system behaves and how the current schedule

SCOPES 21, November 1-2, 2021, Eindhoven, Netherlands

[eXeXe) LoopGUI

File Help
pattern[C(i,j) += A(i,k) * B(k,j)]
runCacheEmulator
tile[i, 32] " Y,Iaclici
it
for (int c0 = 0; c0 <= 1023; c0 +=32) {
i
for (intc1 =0; c1 <=1023; c1 +=1){
Tk

for (intc2 = 0; c2 <= 1023; c2 += 1) {

@ INip
compulsory: 196,608 for (int c3 = 0; €3 <= 31; 3 += 1)
capacity (L1): 1,140,719,616 Clc0 + c3][c1] += (AlcO + c3]c2)) * Blc2]c1));
capacity (L2): 67,043,328 }
total: 4,294,967,296)

}

Access per reference:

Name Type L1% L2% Tot%

Clil] RD 0% 0% 24.98%

Clill WD 0% 0% 24.98%
Figure 2. Loop Tactics interface with live-update and syn-
chronized views. (1) Editable view to specify the transfor-
mation tactic; (2) live-update code (3) code editor switching
between original code and user-provided feedback.

(id) = [C identifier]

(binOp) == "+ || ™| ...

(idList) ::= [comma separated id list]

(stmt) = id (idList) ‘=" id (idList) { binOp (id (idList)) }

(stmtList) == [whitespace separated stmt list]

(pattern) == (stmt)

Figure 3. Simplified EBNF syntax for pattern keyword.
Brackets denote optional clauses, curly brakets denote repe-
titions, and square brackets contain textual description.

performs. The former is obtained by running Haystack, a
fast cache emulator, which provides number of cache misses
in the millisecond’s range, thus providing cache-aware opti-
mizations [9]. The latter is obtained by code generating the
current schedule and timing its execution.

4.1 Graphical User Interface

Figure 2 shows our GUL It combines three main views: (1) is
an editable window where the user can specify the tactic to
apply to a given computational pattern in a given program. A
new program can be open via File — Open. (2) is a read-only
window showing the live-updated code. The code will be
updated by applying the specific transformation for each
directive inserted by the user. (3) is a read-only window
that provides feedback to the user (i.e., after running the
Haystack cache emulator using the runCachEmul directive).
The interface also provides a menu bar located on the top of
the main window, with items for file operations.

4.2 Specification languages

A transformation recipe in our tool is called a “tactic” and
consists of two parts: the specification of a pattern and a set
of rewriting rules that describe how the pattern should be op-
timized. The pattern description is enclosed in the pattern
directive, and it is spelt using Tensor Comprehensions (TC)
notation [17]. Figure 3 shows the EBNF notation for the

Lorenzo Chelini, Martin Kong, Tobias Grosser, and Henk Corporaal

auto hasDimensionality = [&](schedule_node node) {
// check for a 3 nested loop.
return node.schedule().dim == 3

I

auto hasPattern = [&](schedule_node node) {

// check GEMM access patterns, same as ‘hasGemmPattern .

b
auto matcher =
band(_and(hasDimensionality, hasPattern));

Listing 3. Generated tree and access relation matchers.

Directive Short description

reverse(loopTAG) Reverse iteration order
unroll(loopTAG, factor)
tile(loopTAG, factor)

interchange(loopTAG, loopTAG) interchange loops

unroll loop by factor
tile loop by factor, and sink point loop
runCacheEmul run cache emulator on current schedule

timeSchedule generate code for current schedule and time it

Table 1. Directives exposed by LoopOpt.

pattern directive. To be concrete, let us assume that we
want to detect the statement S1 in our running example
(Listing 1). To do so, the user will write the following TC ex-
pression as pattern directive: C(i,j) += A(i,k) * B(k,J)

The expression will get lowered to the tree, and access
matchers reported in Listing 3. The tree matcher looks for a
band node which satisfies two properties expressed as call-
back functions: hasDimensionalty and hasPattern. The
former, ensures structural properties, looking for a band
node containing three schedule dimensions which corre-
sponds to a triple nested loop. The latter, guarantees access
pattern properties, making sure that they equal the one of
a GEMM pattern. The structural properties to be matched
(i.e., the number of bands) is determined from the number of
induction variables—three, in this case, i, j and k, while ac-
cess pattern properties can be easily derived from the tensor
specifications obtained from TC syntax (i.e., access to three
different 2-d tensors). Once the pattern keyword has been
specified, LoopOpt instantiates the matchers and runs them
on the program. If any match happens, LoopOpt annotates
the surrounding loops with tags that can be later referred by
the rewriting rules.

How the pattern should be optimized is specified as a
composition of (instances of) primitive, building-block oper-
ations. Currently, LoopOpt supports basic operations, which
allow affine transformations on loop nests. Table 1 shows the
operations supported, among with the directives the user can
specify to obtain feedback on transformation profitability.

All the supported transformations work on loops. Each
of them must specify the loop it applies to via the 1oopTAG.
tile and unroll take an additional parameter which speci-
fies the unrolling factor or the tile size of the targeted loop,
respectively. For performance feedback, the user has two

I8 Polly 8 LoopOpt 1 Clang

GFLOP/sec

EEE § Y8 E52E¥EES
E EE 8 83 2 E o g8 ¥ » B g
SRR g 2 8 5 5 5 £
=0 3 o 5 @ AR

o0 ’Og o

o &0

Figure 4. LoopOpt enables to get performance comparable,
in some cases, with state-of-the-art optimizers like Polly, and
better than current general-purpose compilers like Clang.

choices: runCacheEmul and timeSchedule. The former al-
lows the user to run the Haystack cache emulator on the
current schedule, which reflects the transformations applied
so far. As output, the cache emulator provides the abso-
lute number of misses for the L1 and L2 level-cache, and
the percentage of cache misses for a given array reference,
this latter information can be used to understand trans-
formation profitability. The second option the user has is
the timeSchedule directive. timeSchedule generates code
from the current schedule, inserting proper initialization
statements, and times its execution by running the code on
the user machine.

5 Evaluation

We present an evaluation of LoopOpt using the linear-algebra
kernels in the Polybench 4.2 (Figure 4. benchmark suite. Our
experimental setup consist of an Intel Core 19-9900K (Coffee
Lake) clocked at 3.6 GHz and running Ubuntu 18.04. The
machine has 64GB of RAM, a L1 of 32KB, a L2 of 256KB
and 16MB of L3. All the results are obtained considering
the minimal execution time of 5 independent (single-thread)
runs, for single-precision operand. We use the default large
configuration for Polybench 4.2. We compare with Polly(git
098130f), a state-of-the-art polyhedral optimizer available
in the LLVM compiler infrastructure, and consider Clang -O3
as our baseline (release 6.0.0). For each, program in the test
suite we use LoopOpt to wrote a tactic. We experimented
with different combinations of transformations to improve
performance by improving locality (mainly loop interchange
and tiling). We select those which showed significant im-
provements. All tactics were written and analyzed in week
time. To lower the C code generated by LoopOpt we use
Clang -03. For the GEMM kernels (2mm, 3mm, and gemm) we
implement a tactic that partially reflects the OpenBLIS trans-
formation [13]. Specifically, for each GEMM pattern, we first
rearrange the band dimensions such that j will be the outer-
most dimension followed by k and i. Then we apply tiling
and loop interchange to create three nested loops around
the macro-kernel and two additional loops around the micro-
kernel. The micro-kernel is a loop around an outer product

SCOPES 21, November 1-2, 2021, Eindhoven, Netherlands

for (int i = 0; i < 1024; i++)
for (int j = 0; j < 1024; j++)
x2[i] = x2[i] + ALjI[i] = y2[jl;

Listing 4. Problematic access pattern in the mvt. Thanks
to runCacheEmul which gives immediate performance feed-
back, the user can write a tactic to interchange loop i and j
and improve performance.

that can be implemented in assembly. The macro-kernel is
a two-dimensional loops around the micro-kernel. We then
unroll the point loops in the micro-kernel to simplify sub-
sequent vectorization. We get quite good performance, but
we did not reach the same performance level as Polly, which
implements the full BLIS transformation. The same perfor-
mance should eventually be reachable once we support the
packing data-layout transformation which ensures strided
accesses for A and B arrays, which Polly does.

Turning our attention on matrix-vector like kernels (atax
to gesummv) we can notice that LoopOpt gets better perfor-
mance than Polly on mvt and gemver. These two kernels
make an interesting case for providing an immediate feed-
back on transformation profitability, focusing on the memory
subsystem. A closer look by running the Haystack cache em-
ulator via the runCacheEmul shows a problematic column-
wise access in both kernels. Listing 4 shows the problematic
access in the mvt benchmark where we can see a column-
wise traversal for array reference A, which reflects in an
increase of L1 and L2 misses detected by Haystack. Thanks
to this hint, we wrote a tactic that exchanges the i and j
loop, thus getting better access pattern property and better
performance. For the remaining kernels, we write a default
tactic that applies a tiling transformation with a tile factor of
32 along each dimension similar to what Polly does. While
we get better performance than Clang, we miss the same
level of optimization of Polly as Polly runs the isl optimizer
and applies additional metadata information that indicates,
for instance, that two arrays do not alias.

6 Related Work

Directive-based Loop Transformation Frameworks:
Multiple works have already explored the composition of
loop transformation through directive-based or programmer-
assisted frameworks; the unifying reordering transforma-
tions framework is probably the very first of them [10].
Yuki et al. developed AlphaZ, a framework to express trans-
formations as a set of equations using the Alpha language [21].
The framework uses a script-driven approach to spell loop
transformations. Similarly, Donadio et al introduced the Xlan-
guage, an embedded DSL based on C/C++ pragmas, that al-
lows generating multi-versioned programs by spelling the
transformations to apply [6]. Chen et al. introduced CHILL, a
high-level transformation and parallelization framework that

SCOPES 21, November 1-2, 2021, Eindhoven, Netherlands

uses a model-driven empirical optimization engine to gener-
ate and evaluate different code variants [5]. Namjoshi et al.
developed Loopy, a framework integrated into Polly for loop
optimization, each user transformation is verified for cor-
rectness by using the precise dependencies analysis of the
polyhedral model. Miiller-Pfefferkorn et al. proposed Goofi
to assist programmers in applying loop transformations for
cache hierarchy and parallelism [14]. Goofi provides a user
interface to make it easier to apply such transformations.
Kruse et al. submitted a proposal to enhance pragma-based
transformations in the Clang front-end [12]. A proposal pro-
totype has been implemented using Clang and Polly. One of
the key aspects of their proposal is the possibility of assigning
identifiers to loops and referring to them in loop transforma-
tions, which we adopt in our work. All these tools expose
some scheduling-based languages, but they imperatively do
that. LoopOpt, on the other hand, adopts a declarative spec-
ification. Instead of binding the transformation recipe to a
loop nest, we bind it to a computational motif.

Interactive Loop Transformation Frameworks:
Zinenko et al. leveraged the geometric nature of the poly-
hedral model by developing Clint, a visualization represen-
tation tool for parallelism extraction based on the precise
dependence analysis of the polyhedral model and real-time
feedback to ensure code correctness [22]. Kennedy et al.
introduced the ParaScop Editor, an interactive parallel pro-
gramming tool assisting in parallelizing Fortran code by
combining programmer expertise with extensive analysis
and program transformations [11].

7 Conclusion

We present LoopOpt an interactive tool to spell transforma-
tions for a computational motif declaratively. Contrary to
existing tools, LoopOpt’s declarative nature allows decou-
pling code structure from code optimization , thus making
the transformation recipe resilient to source-code changes.

References

[1] Lénaic Bagnéres and Others. 2016. Opening Polyhedral Compiler’s
Black Box. In Proceedings of the 2016 International Symposium on Code
Generation and Optimization (CGO ’16). ACM, New York, NY, USA,
128-138. https://doi.org/10.1145/2854038.2854048

[2] Cédric Bastoul. 2016. Mapping Deviation: A Technique to Adapt or to

Guard Loop Transformation Intuitions for Legality. In Proceedings of

the 25th International Conference on Compiler Construction (CC 2016).

ACM, New York, NY, USA, 229-239. https://doi.org/10.1145/2892208.

2892216

Uday Bondhugula and Others. 2008. A Practical Automatic Polyhe-

dral Parallelizer and Locality Optimizer. In Proceedings of the 29th

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI *08). ACM, New York, NY, USA, 101-113. https:

//doi.org/10.1145/1375581.1375595

Lorenzo Chelini and Others. 2019. Declarative Loop Tactics for

Domain-Specific Optimization. ACM Trans. Archit. Code Optim. 16, 4,

Article 55 (Dec. 2019), 25 pages. https://doi.org/10.1145/3372266

[5] Chun Chen and Others. 2008. CHiLL: A framework for composing
high-level loop transformations. Technical Report. Citeseer.

3

—

[4

[lam)

Lorenzo Chelini, Martin Kong, Tobias Grosser, and Henk Corporaal

[6] Sebastien Donadio and Others. 2006. A Language for the Compact Rep-
resentation of Multiple Program Versions. In Languages and Compilers
for Parallel Computing, Eduard Ayguadé and Others (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 136-151.

[7] Paul Feautrier and Christian Lengauer. 2011. Polyhedron Model.
Springer US, Boston, MA, 1581-1592. https://doi.org/10.1007/978-
0-387-09766-4_502

[8] Tobias Grosser and Others. 2011. Polly-Polyhedral optimization in
LLVM. In Proceedings of the First International Workshop on Polyhedral
Compilation Techniques (IMPACT), Vol. 2011. 1.

[9] Tobias Gysi and Others. 2019. A Fast Analytical Model of Fully Asso-

ciative Caches. In Proceedings of the 40th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI 2019).

Association for Computing Machinery, New York, NY, USA, 816-829.

https://doi.org/10.1145/3314221.3314606

W. Kelly and W. Pugh. 1995. A unifying framework for iteration

reordering transformations. In Proceedings Ist International Conference

on Algorithms and Architectures for Parallel Processing, Vol. 1. 153-162

vol.1. https://doi.org/10.1109/ICAPP.1995.472180

Ken Kennedy and Others. 1991. Interactive parallel programming

using the ParaScope Editor. IEEE Transactions on Parallel & Distributed

Systems 3 (1991), 329-341.

Michael Kruse and Hal Finkel. 2018. User-Directed Loop-

Transformations in Clang. In 2018 IEEE/ACM 5th Workshop on the

LLVM Compiler Infrastructure in HPC (LLVM-HPC). IEEE, 49-58.

Tze Meng Low and Others. 2016. Analytical Modeling Is Enough for

High-Performance BLIS. ACM Trans. Math. Softw. 43, 2, Article 12

(Aug. 2016), 18 pages. https://doi.org/10.1145/2925987

Ralph Miiller-Pfefferkorn and Others. 2004. Optimizing Cache Access:

A Tool for Source-to-Source Transformations and Real-Life Compiler

Tests. In Euro-Par 2004 Parallel Processing, Marco Danelutto and Others

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 72-81.

Gabe Rudy and Others. 2010. A Programming Language Interface

to Describe Transformations and Code Generation. In Languages

and Compilers for Parallel Computing, Keith Cooper and Others (Eds.).

Number 6548 in Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 136-150.

Konrad Trifunovic and Others. 2010. GRAPHITE Two Years After:

First Lessons Learned From Real-World Polyhedral Compilation. In

GCC Research Opportunities Workshop (GROW’10). Pisa, Italy. https:

//hal.inria.fr/inria-00551516

Nicolas Vasilache and Others. 2019. The Next 700 Accelerated Layers:

From Mathematical Expressions of Network Computation Graphs to

Accelerated GPU Kernels, Automatically. ACM Trans. Archit. Code

Optim. 16, 4, Article 38 (Oct. 2019), 26 pages. https://doi.org/10.1145/

3355606

[18] Sven Verdoolaege. 2010. isl: An Integer Set Library for the Polyhe-
dral Model. In Mathematical Software — ICMS 2010, Komei Fukuda,
Joris van der Hoeven, Michael Joswig, and Nobuki Takayama (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 299-302.

[19] Sven Verdoolaege and Tobias Grosser. 2012. Polyhedral Extraction
Tool. In Second Int. Workshop on Polyhedral Compilation Techniques
(IMPACT’12). Paris, France.

[20] Sven Verdoolaege and Others. 2014. Schedule trees. In International

Workshop on Polyhedral Compilation Techniques, Date: 2014/01/20-

2014/01/20, Location: Vienna, Austria.

Tomofumi Yuki and Others. 2012. Alphaz: A system for design space

exploration in the polyhedral model. In International Workshop on

Languages and Compilers for Parallel Computing. Springer, 17-31.

[22] O. Zinenko and Others. 2014. Clint: A direct manipulation tool for
parallelizing compute-intensive program parts. In 2014 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC).
109-112. https://doi.org/10.1109/VLHCC.2014.6883031

[10

[t

[11

—

(12

—

[13

—

[14

=

[15

—

(16

—

(17

—

[21

—

