archives-ouvertes

TC-CIM: Empowering Tensor Comprehensions for
Computing-In-Memory
Andi Drebes, Lorenzo Chelini, Oleksandr Zinenko, Albert Cohen, Henk

Corporaal, Tobias Grosser, Kanishkan Vadivel, Nicolas Vasilache

» To cite this version:

Andi Drebes, Lorenzo Chelini, Oleksandr Zinenko, Albert Cohen, Henk Corporaal, et al.. TC-CIM:
Empowering Tensor Comprehensions for Computing-In-Memory. IMPACT 2020 - 10th International

Workshop on Polyhedral Compilation Techniques, Jan 2020, Bologna, Italy. hal-02441163

HAL Id: hal-02441163
https://hal.inria.fr /hal-02441163
Submitted on 15 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.inria.fr/hal-02441163
https://hal.archives-ouvertes.fr

TC-CIM: Empowering Tensor Comprehensions for
Computing-In-Memory

Andi Drebes Lorenzo Chelini Oleksandr Zinenko
Inria and Ecole Normale Supérieure TU Eindhoven Google
Paris, France Eindhoven, The Netherlands Paris, France
andi.drebes@inria.fr IBM Research Zurich zinenko@google.com

Zurich, Switzerland

l.chelini@tue.nl
Albert Cohen Henk Corporaal Tobias Grosser
Google TU Eindhoven ETH Zurich

Paris, France
albertcohen@google.com

Kanishkan Vadivel
TU Eindhoven
Eindhoven, The Netherlands
k.vadivel@tue.nl

Abstract

Memristor-based, non-von-Neumann architectures perform-
ing tensor operations directly in memory are a promising
approach to address the ever-increasing demand for energy-
efficient, high-throughput hardware accelerators for Ma-
chine Learning (ML) inference. A major challenge for the
programmability and exploitation of such Computing-In-
Memory (CIM) architectures consists in the efficient map-
ping of tensor operations from high-level ML frameworks
to fixed-function hardware blocks implementing in-memory
computations.

We demonstrate the programmability of memristor-based
accelerators with TC-CIM, a fully-automatic, end-to-end
compilation flow from Tensor Comprehensions, a mathe-
matical notation for tensor operations, to fixed-function
memristor-based hardware blocks. Operations suitable for
acceleration are identified using Loop Tactics, a declarative
framework to describe computational patterns in a poly-
hedral representation. We evaluate our compilation flow
on a system-level simulator based on Gemb5, incorporating
crossbar arrays of memristive devices. Our results show that
TC-CIM reliably recognizes tensor operations commonly
used in ML workloads across multiple benchmarks in order
to offload these operations to the accelerator.

Keywords Machine Learning, Computing-In-Memory, Ten-
sor Comprehensions, Loop Tactics, Schedule Trees.

IMPACT 2020, January 22, 2020, Bologna, Italy

Eindhoven, The Netherlands
h.corporaal@tue.nl

Zurich, Switzerland
tobias.grosser@inf.ethz.ch

Nicolas Vasilache
Google
New York, United States
ntv@google.com

1 Introduction

CMOS-based technology has hit the power wall and nears
the end of decades-long aggressive scaling. The energy con-
sumption and delay of data movement compared to arith-
metic operations [10] have never been higher. Additionally,
the available memory bandwidth in today’s systems is not
able to keep up with the demand of modern, data-intensive
workloads [37].

This has led to a growing interest in domain-specific hard-
ware accelerators, abandoning the conventional separation
of memory and computing units of the von-Neumann archi-
tecture. Such Computing-In-Memory (CIM) systems are com-
posed of combined units, performing computation directly
in memory and without frequent long-distance, off-chip data
movement.

A promising approach for the implementation of such
accelerators consists in combining a set of memristor-based
device into crossbar arrays [35]. Each individual memristive
device is capable of storing a multi-bit value as its conduc-
tance state. Upon application of an input voltage, the con-
ductance value is multiplied by the input, and the result can
be measured at the output of the device.

Assembling many memristive devices into arrays allows
for in-place computation of fixed-size tensor operations in
constant time. For example, the dot product of two fixed-size
vectors v; and v, can be accomplished by applying voltages
corresponding to the values of v; to a column of memris-
tive devices whose conductance correspond to the values v,
and by measuring the resulting current for the entire col-
umn. This can further be extended to fixed-size matrix-vector
multiplications in constant time by adding one column of
memristive devices for each row of the input matrix and

IMPACT 2020, January 22, 2020, Bologna, Italy

by measuring the current at each column. Since memristive
devices combine storage and computation, data movement
only occurs when new input needs to be loaded into the
array or when output values need to be moved out.

This solution is particularly appealing for Machine Learn-
ing (ML) applications [22], which commonly rely on ten-
sor operations that can be broken down into the above-
mentioned matrix-vector operations.

A key factor for efficient acceleration of ML workloads
is the detection, extraction and efficient mapping of ten-
sor operations to the crossbars. While a significant body
of work uses memristor crossbars to build special-purpose
accelerators, the mapping of operations is often left to the
programmer [22, 26, 36]. As a consequence, efficient exploita-
tion requires manual intervention and a deep understanding
of technical details of the hardware and thus severely limits
programmability. This opposes to the recent trend to increase
productivity through high-level abstractions [12, 32, 40, 41]
for ML.

The goal of this work is to demonstrate the programmabil-
ity of CIM accelerators in general and memristor-based ar-
chitectures in particular. To this end, we present an approach
to fully automatically detect tensor operations eligible for
offloading to memristor-based accelerators in high-level, ab-
stract representations of machine-learning applications and
to map these operations efficiently to the hardware. Our
implementation, called TC-CIM, integrates Loop Tactics, a
technique for matching patterns in schedule trees of the poly-
hedral framework, into Tensor Comprehensions, a framework
generating highly optimized kernels for accelerators from
an abstract, mathematical notation for tensor operations.
The flow performs a set of dedicated optimizations aiming
at enabling the reliable detection of computational patterns
and their efficient mapping to the accelerator. Our approach
is based on the observation that despite the large variety of
ML workloads, most of them share common linear algebra
primitives suitable for CIM architectures.

We make the following contributions:

e TC-CIM, a fully automatic, end-to-end compilation
framework based on Tensor Comprehensions and
Loop Tactics which enables the users to exploit in-
memory acceleration transparently.

e An experimental evaluation, demonstrating that tensor
operations frequently occurring in ML kernels can
be reliably identified and extracted with TC-CIM and
executed on a Gem5-based simulator for memristor-
based accelerators.

The paper is organized as follows. Section 2 introduces
Tensor Comprehensions and Loop Tactics. The integration of
these approaches into TC-CIM, as well as dedicated exten-
sions to extract, offload and map tensor operations to the
accelerator are presented in Section 3. Section 4 describes
our experiments on tensor operations commonly found in

Drebes, et al.

ML kernels. Related work is presented in Section 5, before
the concluding remarks of Section 6.

2 Tensor Comprehensions and Loop
Tactics

Since our approach is based on Tensor Comprehensions and
Loop Tactics, we first provide an overview of both projects in
Sections 2.1 and 2.3. An explanation of schedule trees, neces-
sary for the discussion of Loop Tactics, is given in Section 2.2.

2.1 Tensor Comprehensions

Tensor Comprehensions [41] is an integrated productivity-
oriented system for expressing machine learning workloads
embedded into PyTorch, providing a concise input notation
with range inference capabilities and leveraging a polyhedral
compiler for GPU code generation. In contrast to conven-
tional ML systems, Tensor Comprehensions is not limited to a
predefined set of operations or layers (such as convolutions
or matrix multiplications), but allows the user to specify
custom computations using index expressions on tensors.
Types and shapes of intermediate tensors only need to be
provided explicitly where automatic inference fails due to
ambiguity. Tensor Comprehensions generates efficient GPU
code that fits into a single GPU kernel or, alternatively, into
an ML framework operator.

The automation of the compilation flow abstracts the
implementation details away from programmers, allowing
them to reason in mathematical terms. It also enables the
compiler to perform advanced program transformations us-
ing precise analysis from the polyhedral model, such as op-
erator fusion, eliminating the requirement for temporary
storage and spurious serialization by combining multiple ML
operations.

2.1.1 Specifying Tensor Operations

The syntax of Tensor Comprehensions borrows from Einstein
Notation, where universal quantifiers (becoming loops in a
program) are introduced implicitly. The listing below demon-
strates a simple matrix-vector multiplication between an
M X K matrix A and a K-vector x, resulting in a vector c, all
composed of single-precision floating-point values.

def mv(float(M,K) A, float(K) x) -> (c) {

c(i) +=! A(i,k) * x(K)

}

The shape and the type of inputs are provided explicitly
in the function signature, while those of the output tensor
are inferred from the index variables. The index variable i
iterates over the first dimension of A, its range is therefore
[0, M —1]. Since i also indexes the output vector c, the size of
c is M. Similarly, Tensor Comprehensions deduces the range
for k from the tensors on the right-hand side of the expres-
sion. The algorithm proceeds iteratively if more than one
iterator is involved in a subscript, using the ranges computed

TC-CIM: Empowering Tensor Comprehensions for Computing-In-Memory

on the previous step together with the known sizes of the
tensors on the right-hand side to infer the shape of the tensor
on the left-hand side.

The iterator k only appears on the right-hand side, which
indicates that the entire expression is a reduction over k.
The “!” mark in the operator denotes a default-initialized
reduction. For sum-reductions, as in the example, the left-
hand side is initialized with zeros of an appropriate type.

The element type of the output matrix is inferred from
the result type of the multiplication and the reduction. As
the sum of multiplications of single-precision floating-point
values has the same type, c is a vector of single-precision
floating-point elements.

2.1.2 Compilation to GPU kernels

To translate the high-level expressions to GPU kernels, Ten-
sor Comprehensions successively translates and transforms
the input in multiple steps. Figure 1 illustrates the compila-
tion flow when targeting CUDA GPUs.

The input notation is first parsed using a recursive de-
scent method, producing an abstract syntax tree. This tree
is converted into the (high-level) Halide [33] intermediate
representation (IR), involving tensors and mathematical ex-
pressions. Shape inference is performed at this level using
Halide’s mathematical toolkit to identify the shape of all
intermediate and output tensors. The IR is then expanded
to expressions with loops around them, which are further
converted into a representation based on schedule trees [44].
Tensor Comprehensions applies customized affine scheduling
derived from isl [42] to this representation to expose par-
allelism and exploit locality, while producing at least one
outermost parallel loop. It then maps the computations to a
GPU device, associating outermost parallel loops with GPU
blocks and innermost parallel loops with GPU threads, and
copying data to shared and private memory and inserting
relevant synchronizations based on fine-grain dependence
analysis. Finally, a customized isl code generation algorithm
is applied to produce a GPU kernel, which is JIT-compiled
through CUDA drivers and executed immediately. The com-
pilation artifacts are stored in an internal cache, indexed by
the canonicalized form of input program and compilation
options. Additionally, some scheduling, tiling and mapping
choices are exposed to the user and can be used to auto-tune
the compiler.

Schedule trees are the cornerstone intermediate represen-
tation for affine transformations and mapping in Tensor Com-
prehensions. Although implementation details differ, they are
also the basis for Loop Tactics’ pattern-matching scheme. The
following section provides an overview on the schedule tree
representation.

2.2 Schedule Trees

Within the polyhedral model, the computations to be carried
out at execution are defined by the iteration domain, a set of

IMPACT 2020, January 22, 2020, Bologna, Italy

statement instances resulting from executions of a statement
in a loop nest. In Tensor Comprehensions, the iteration do-
main of each statement is a defined as a Cartesian product of
all integer values in the range of all iterators. The schedule
defines the order in which statement instances are executed.
A schedule tree [44] is a representation of affine schedules,
designed to eliminate redundancy and provide flexibility for
code generation. Among others, the isl library, Tensor Com-
prehensions and Loop Tactics have adopted schedule trees as
the representation for schedules. In this section, we provide
a brief description of the schedule tree components relevant
to the further discussion. For a detailed description, we refer
to the schedule tree paper [44].

A schedule tree is composed of nodes, which are instances
of multiple types: domain nodes, context nodes, sequence nodes,
set nodes, filter nodes, band nodes, extension nodes, and mark
nodes.

Domain nodes define the iteration domain of the program.
In this paper, we only consider trees with a single domain
node as the root.

Optional context nodes provide information about pro-
gram parameters, i.e., values that are known to be constant
during the execution, but whose values are unknown at com-
pile time. Each context node may introduce new program
parameters or provide additional constraints on parameter
values. For example, in the context of code generation for
GPUs, context nodes are used to introduce parameters for
block and thread identifiers, as these must be emitted sym-
bolically.

The schedule represented by a schedule tree is structured
by sequence nodes and set nodes. The former imposes sequen-
tial execution of their children, while the latter specifies that
their children can be executed concurrently. Sequence and
set nodes are the only nodes that can have multiple children;
all other nodes can have at most one child. Their children
are always filter nodes, which restrict the schedule defined
by their descendants to a subset of the iteration domain.

Partial affine schedules are encoded in band nodes, which
also indicate if the band dimensions are parallel and whether
they are permutable. Extension nodes introduce auxiliary
statements into the computation. They are primarily used
for synchronization primitives and data transfer loops when
targeting accelerators. Finally, mark nodes represent anno-
tations of a subtree with arbitrary additional data that is
preserved for the code generation phase.

Figure 2a illustrates the schedule tree corresponding to
the C code in Listing 1. The tree consists of a domain node,
followed by a sequence node with two children, the first of
which has a two-dimensional band, encoding the schedule of
statement S1, while the second has a three-dimensional band
encoding the schedule of S2. This tree corresponds to the
loop-distributed version of matrix multiplication. Fusing the
outer loops would create a band node above the sequence

IMPACT 2020, January 22, 2020, Bologna, Italy

Drebes, et al.

Polyhedral
Transformations

CUDA backend

Tensor Comprehensions g TClang m& Halide IR Polyhedral IR mw

Figure 1. Compilation flow of Tensor Comprehensions.

for (int i =
for (int j
S1: CLil[j]
for (int i = i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
S2: CLil[j] += alpha = A[il[k] * BCkI[jI;

i < N; ++1)
Q; j < N; ++j)
beta * C[i][j];

N o

I o 1

Listing 1. Generalized matrix multiplication (GEMM).

node, common to both statements, as shown in Figure 2b.
The new band node makes the band node of the branch for
S; unnecessary, but the band node for S, is still required due
to ordering on the k dimension.

2.3 Loop Tactics

Loop Tactics [11, 47] is a framework based on the is! library
supporting a declarative specification of affine transforma-
tions. The three main concepts in Loop Tactics are Schedule
Tree Matchers, recognizing patterns in schedule trees, Rela-
tion Matchers, recognizing access patterns, and Tree Builders,
which allow for the construction of sub-trees implementing
loop transformations.

Schedule Tree Matchers and Builders A Schedule Tree
Matcher is a declarative description of a tree pattern whose
occurrences are to be located in a schedule tree. Each matcher
is represented as a tree that corresponds to the structure
of sub-trees of interest. In addition to the node types for
schedule trees, matchers may also include wildcard nodes
to specify arbitrary sub-patterns and further support filter
predicates (implemented as callback functions) to restrict
matches to properties that involve more than just the shape
of the tree. For example, a matcher may only accept per-
mutable bands if it is used to find tiling opportunities, or
only accept outermost bands with parallel loops if it is used
for device mapping.

The matchers can be used to capture specific schedule
tree nodes that serve as pointers into the matched sub-tree.
These nodes can then be used to implement transformations
declaratively using Schedule Tree Builders. Builders use a
syntax similar to matchers to describe the structure of the
schedule tree to be constructed. Each call to a builder takes
as arguments the properties of the node to be constructed,
e.g., the partial schedule for the band nodes or a subset of

the iteration domain for filter nodes. In addition, builders
support the insertion of arbitrary sub-trees rooted at a given
node, provided that the final tree respects the schedule tree
invariants.

In summary, a loop transformation can be expressed as a
matcher pattern that captures a set of nodes and a builder
that reorganizes the captured nodes into a new structure or
modifies their properties. The schedule tree is essentially
recreated by each builder, which aligns well with functional-
style declarative APIs.

The matcher in Listing 2 (Lines 25-30) shows how a sub-
tree starting at a sequence node with at least one filter node
followed by a band as children can be detected. The band
node is matched only if the callback hasGemmPattern re-
turns true. In case of a match, the node corresponding to the
GEMM pattern (body) is captured (Line 29), and the sub-tree
is rebuilt by splitting the body node into two nested bands
by taking the integer division and the modulo parts of the
schedule (Lines 32-35). The integer division and the modulo
part of the schedule are obtained via Loop Tactics’ functions
tileSchedule and pointSchedule.

Access Relation Matchers Access relation matchers allow
the caller to identify memory accesses that have certain
properties in a union of relations. The matching mech-
anism operates through placeholders (placeholder and
arrayPlaceholder). Each placeholder has two data com-
ponents: a constant pattern and a variable candidate. Each
relation is checked against a pattern and may yield one or
more candidates. Currently, Loop Tactics provides pattern
and candidate descriptions for affine expressions of the form
® =k %1+ ¢, where k and ¢ represent a pattern and « and
1 define a candidate by matching one of the output and in-
put dimensions, respectively. A match is an assignment of
candidates to placeholders.

As an example, consider the access relation matchers
shown in Listing 2 (lines 1-21), locating GEMM-specific
access patterns. Such patterns have at least three two-
dimensional reads to different arrays (lines 12-15), one write
access (line 17), and a permutation of indexes that satisfies
the placeholder pattern [i, j] — [i, k][k, j]. The latter condi-
tion is enforced by using the same placeholders in _i, _j and
_k at the respective positions in the access matchers and by
checking the number of matches in lines 19 and 20.

= - N, BN SR TR

TC-CIM: Empowering Tensor Comprehensions for Computing-In-Memory

Domain Node

51(6,4) |0< 4,5 <N
Sa(i, g, k) |0 <i,j,k < N
|

Sequence Node

Filter Node

S1(3,)

$1(i,5) = (i, 5)

Filter Node
Sa(i, j, k)

Sali,j, k) = (i,4, k) |

(a) With distributed i and j loops

IMPACT 2020, January 22, 2020, Bologna, Italy

51(6,5) |0 <, 5 <N
Sa(i,5,k) |0 < d,5,k < N

Sl(ivj) — (27])
S2(i, 3, k) = (4,)
|

Sequence Node

Filter Node
S1(i, 5)

Filter Node
Sa(i, 3, k)

$2(i,,k) = (1,3, k) |

(b) With fused i and j loops

Figure 2. Schedule trees for Listing 1. Dotted lines: sub-tree matched by the matcher from Listing 2, Lines 25-30.

auto hasGemmPattern = [&](schedule_node node) {

auto _i = placeholder();

auto _j = placeholder();

auto _k = placeholder();

auto _A = arrayPlaceholder();

auto _B = arrayPlaceholder();

auto _C = arrayPlaceholder();

auto reads = /* get read accesses */;

auto writes = /* get write accesses */;
auto mRead = allOf(

access(_C, _i, _j),

access(_A, _i, _k),

access(_B, _k, _j));
auto mWrite = allOf(access(_C, _i, _j));
return match(reads, mRead).size() == 1 &&

match(writes, mWrite).size() == 1;

1
schedule_node body, continuation;

auto matcher =
sequence(
hasDescendant (
filter(
band(body, hasGemmPattern, // filter function
anyTree(continuation)())))); // wildcard

auto builder =
band([&]() { return tileSchedule(body, tileSize); },
band([&]() { return pointSchedule(body, tileSize); 3,
subtree(body)));

Listing 2. Tree and Access Relation matchers for GEMM.

3 TC-CIM

We may now describe how TC-CIM integrates Loop Tactics
into Tensor Comprehensions and how matchers are used to
recognize patterns for offloading to CIM accelerators.

The accelerator architectures targeted by TC-CIM differ
substantially from GPUs targeted by Tensor Comprehensions:
they are not generally programmable and only support fixed
functions. This means that parallelism can only be exploited
within the offloaded patterns and there is no concept of
threads executing in parallel. All instructions that are not
part of a fixed pattern must therefore be executed by a
general-purpose host CPU and the fixed patterns are of-
floaded via specialized instructions. From the programmer’s
perspective, this is similar to sequential code for general-
purpose CPUs with interlaced calls to specialized libraries
(e.g., BLAS [8]).

3.1 Outline of the modified compilation flow

In order to support CIM accelerators, we first added a new
backend for the generation of sequential C code. This back-
end is based on the existing CUDA backend, but omits all
work partitioning for blocks and threads, synchronization
between instructions executing in parallel, memory promo-
tion and any CUDA-specific primitives and library calls. We
then added an optimization pass invoking Loop Tactics with
appropriate matchers and builders.

Figure 3 shows the modified compilation flow for TC-CIM.
Up until the generation of the polyhedral IR, this flow is
identical with the default flow of Tensor Comprehensions.
The major modification occurs before generation of the isl
AST, when pattern detection based on Loop Tactics is carried
out. In this step, patterns are searched in the schedule tree
and matches are recorded using mark nodes. These marks
are preserved in the isl AST and processed by the custom

IMPACT 2020, January 22, 2020, Bologna, Italy

Drebes, et al.

Polyhedral Pattern detection
Transformatlons and marklng

Tactics backend

Tensor Comprehensions m Halide IR Polyhedral IR Loop Tact|cs ISO C99

Is| AST

Figure 3. Modified compilation flow for TC-CIM.

printer generating C Code, which finally emits function calls
to a CIM accelerator library.

The flow currently focuses on the detection and offloading
of individual operations with hardware support and does not
yet include inter-operation optimizations (e.g., minimizing
data movement between the host and the accelerator, opera-
tor fusion for combined instructions, etc.). For this reason,
we chose to match patterns on the schedule tree rather than
on TC expressions, to benefit from affine scheduling and its
ability to expose parallel dimensions, tilable bands, distrib-
ute computations across different bands amenable to pattern
matching. We will discuss this choice and the potential for
more global optimization in Section 4.4.

3.2 Matching

TC-CIM currently recognizes patterns for three operations:
plain matrix-vector multiplication, plain matrix multiplica-
tion and batched matrix multiplication; these operations are
further extended to handle any loop permutation and trans-
posed accesses.

The patterns in the schedule tree for all three operations
are sufficiently similar such that recognition can be imple-
mented with a single matcher and appropriate functions
distinguishing between the operations when processing a
match. In addition, the matcher is provided with a callback
function that checks the access pattern and operations of a
candidate match to exclude matches on structurally compli-
ant sub-trees featuring scalar operations that are not sup-
ported on the target. The former involves the use of appropri-
ate access relation matchers, while the latter requires custom
procedures analyzing the Halide expressions associated to
the polyhedral statements.

In case of a successful match and positive checks, the
root node of the matched sub-tree is marked with a mark
node whose name indicates the matched operation (i.e.,
_mvt, _gemm or _batched_gemm) and whose pointer for user-
defined data receives the address of a structure with all meta-
information that is needed to emit the call to the specialized
library function with the correct parameters during code
generation.

Upon generation of the isl AST, the information of mark
nodes is preserved as AST mark nodes, which are processed
by the printer generating the C code.

Figure 4 illustrates this procedure for a plain matrix
multiplication. The schedule tree initially contains a sub-
tree formed of a band node, a sequence node, and its chil-
dren. The children of the sequence corresponds to the zero-
initialization of the output matrix and the reduction opera-
tion of the matrix multiplication. The pattern matching pro-
cedure inserts a mark node at the root of the sub-tree, which
points to a GEMM Info structure whose payload holds the
operands, sizes of the dimensions and flags for the transposi-
tion of the operands. When generating the is! AST, the mark
is interpreted by the printer to emit a call to cimblas_gemm.

Although the AST contains an entire sub-tree for the op-
eration below the mark node (e.g., for nodes and user nodes
for the initialization and reduction in the matrix multiplica-
tion example), as of now, this part is simply ignored in our
TC-CIM prototype. For future implementations, we plan to
replace the marking-based scheme with actual transforma-
tions of the schedule tree, such that no custom handling is
needed in the printer.

We also plan to perform tiling on the bands of matched
operations in order to overcome the limitations for the max-
imum size of operands when offloading to the accelerator.
Currently, this issue can be addressed by applying tiling
when generating the schedule before matching. While this
leads to the desired effects on the size of offloaded operands,
this scheme is overly eager and also tiles bands that do not
belong to any offloaded operation. By performing the tiling
only on bands of matched operations in future implementa-
tions, no unnecessary tiling will be performed.

Stepping back, one should notice that most of these adap-
tations of the matchers are not specific to CIM. Many opti-
mization and hardware acceleration schemes involve shape
and memory capacity limitations that TC-CIM addresses,
from hardwired tensor core shapes on Nvidia GPUs to fixed
matrix sizes and alignment constraints on numerical libraries
[39]. The future work highlighted in the previous paragraph
makes even more sense when considering this broader con-
text.

4 Evaluation

In this section, we show that TC-CIM is able to identify
and extract matrix and matrix-vector multiplications from
multiple benchmarks and that the matching is robust against
prior transformations. We evaluate both the static impact of

TC-CIM: Empowering Tensor Comprehensions for Computing-In-Memory

.................

:J\rbitrary Ancestors".
....... e mm—-

def kernel(
float (M,N) A,
float(N,K) B) -> (C)

H
Band Node Band Node

{

C(lk) +=1
A(i, n) * B(n, k)

}

Sequence Node Sequence Node

Matching

Filter Node Filter Node Filter Node

Leaf Node Leaf Node Leaf Node

GEMM Info

Filter Node

Leaf Node

IMPACT 2020, January 22, 2020, Bologna, Italy

{ Arbitrary Ancestors }
________ ncestors!

H
AST Mark Node GEMM Info

void kernel(int K, int M, int N,
floatx C,
float* A,
float* B)

_gemm

For Node

For Node e
AST Generation Printing cimblas_gemm(K,
C,

M, N,
A, B,
)5

User Node For Node

User Node

Figure 4. Pattern matching, marking and code generation for GEMM.

TC-CIM on the generated source code and its impact on the
number of dynamic operations offloaded to the accelerator.

4.1 CIM Architecture

Figure 5 shows an overview of our SoC emulated in Gem5 [7].
The SoC consists of a single Arm high-performance in-order
core (HPI core!), main memory (256 MiB), and a CIM accel-
erator interconnected via the system bus. The accelerator is
memory-mapped and accesses the shared memory via DMA
operations. The central part of the accelerator is the control
unit, while the execution pipeline is a single CIM-tile. Within
the CIM-tile, the memristor crossbar executes analog vector-
matrix multiplications. We model a 256 x 256 PCM-crossbar
with 8 bit precision using 4 bit PCMs. We accomplish this
by distributing the computation over multiple columns and
perform a weighted sum at the columns’ output using addi-
tional digital logic (Shift & Add block in Figure 5c) [13]. This
allows the accelerator to perform operations on tensors com-
posed of 8 bit integer elements. The physical properties of a
single PCM device such as read and write latency are taken
from literature [24]. Being an analog device, the memristor
crossbar requires additional mixed-signal circuitry to inter-
act with the digital system. The voltage source (V), sample
and hold (S&H), and the analog-to-digital converter ADCs in
the design (Figure 5c) serve this purpose. Row and column
buffers in Figure 5b act as temporary data registers for the
PCM crossbar.

In a typical offloading scenario, the host prepares the data
on shared memory and triggers the accelerator execution
by writing to special memory-mapped registers. The CIM
accelerator then reads the data in the shared-memory via
DMA transactions. Once done, the accelerator writes back
the results in the shared memory. The host monitors the sta-
tus of CIM execution by polling the status register, and upon
completion, it can safely resume execution. Cache coherency
is ensured by flushing the CPU cache before acceleration. All
steps necessary for offloading (i.e., flushing the CPU cache)
are encapsulated by a system library that exposes high-level
BLAS-like APIL To reduce simulation time in our experi-
ments, we used a lightweight, bare-metal implementation of
the library directly interacting with the hardware instead of

IThe Arm Research Starter Kit, Sep 2017

a full-system simulation with a complete operating system
kernel and user-space.

4.2 Benchmarks and Workloads

To evaluate TC-CIM on simple kernels composed of a single
tensor operation, we used mv (matrix-vector multiplication),
mm (matrix-matrix multiplication), and batchmm (batched
matrix-matrix multiplication). As a representative for ker-
nels with multiple tensor operations, we have added 3mm
(two matrix-matrix multiplications and the multiplication of
their results) and 4cmm, which performs four consecutive,
independent matrix-matrix multiplications.

As a more advanced use case, we experimented with the
multi-layer perceptron component of a production model
reported in the Tensor Comprehensions paper [41]. This
model has trailing fully-connected layers followed by non-
linearities, which corresponds to matrix-matrix multiplica-
tions and pointwise operations. In Tensor Comprehensions,
these layers were split into two parts: MLP1 and MLP3, with
the former containing a single matrix multiplication and
the latter containing three matrix multiplications using each
other’s result. Since the single matrix multiplication of MLP1
is already covered by mm, we have only added mlp3 to the
evaluation.

In order to match the element size of the CIM accelerator,
we used tensor elements with a size of 8 bit in all benchmarks.

4.3 Kernel Experiments

We evaluate the effects of TC-CIM on the program in two
ways: static impact on the generated source code and dy-
namic impact on execution.

Static impact For each combination of benchmarks and
workloads, we have generated specialized code with TC-CIM
by setting the parameters corresponding to the workload
sizes statically. As a first metric for the success of the match-
ing, we have determined the number of callsites for CIM
library functions statically from the source code and com-
pared it to the maximum number of callsites expected for
perfect matching (Oracle). Figure 6 shows the number of
callsites for each of the benchmarks, under two different con-
ditions: in TC-CIM-not tiled, we carried out the matching
right after running the affine scheduler, while for TC-CIM

IMPACT 2020, January 22, 2020, Bologna, Italy

Drebes, et al.

DMA @ -

, A A
L v
Context
Register
Ao (ARG CIM Tile
CPU CiMm

Accelerator
L1

-

CIM Accelerator

Control Unit
Row Buffers

Column Buffers

Crossbar

Output Buffers

2,0

G\o,%\ G\%\

S&H S&H S&H

A

ADC

Main Memory

(a) Overview of the architecture

(b) Architecture of the CIM accelerator

N
N
N
g) ¢
N
N
N

Shift & Add

(c) Memristive crossbar array

Figure 5. Overview of the emulated system.

.l ‘TC-CIM-tiled TC‘-CIM-not tiled Oraclei
Z

S AP A AL
& & & @;&0@ &S

Figure 6. Number of callsites for CIM library functions in-
serted by TC-CIM without (TC-CIM-not tiled) and with prior
tiling (TC-CIM-tiled) compared to perfect matching (Oracle).

tiled, we additionally forced tiling on the three outermost
loops with tile sizes of 32 before the matching. The suffixes
for mm and mv indicate whether the operands are trans-
posed (nn: no transposition, tn: first operand transposed, nt:
second operand transposed).

For the non-tiled version, TC-CIM detects all but one ma-
trix multiplication in mlp3. This multiplication is missed, as
it does not match the structure expected by the matcher: the
matcher expects the initialization statement and the core-
computation statement to be filter nodes under the same
sequence, while in this case, the filters are children of differ-
ent sequences.

For the tiled version, TC-CIM is still capable of detecting
all operations for all benchmarks. Indeed, tiling does not
affect detection at all since TC-CIM runs a canonicalization
pass which squashes together point-loop and tile-loop bands.

At this stage, TC-CIM reliably detects the relevant pat-
terns for most cases, even in the presence of prior tiling
transformations and for transposed accesses. The remain-
ing mismatches motivate further work to better coordinate
affine transformations and matchers/builders.

Dynamic Impact To measure the impact of the matching
on the execution, we have instrumented the simulator to
report the number of dynamic arithmetic instructions and
memory accesses on the host CPU and CIM accelerator. We
recorded these numbers for the code generated by TC-CIM
without tiling and for a sequential baseline without library
calls that has been generated with the matchers disabled.

Figure 7 shows the breakdown of host instructions for
the baseline without CIM offloading. The breakdown for
host instructions with offloading, normalized to the total
number of dynamic host instructions of the corresponding
benchmark from the baseline from Figure 7, is shown in
Figure 8.

Several key observations can be made from the differences
between the figures:

e Almost all ALU operations are offloaded to CIM. This
is coherent with the observations from the previous
section: the eligible operations represent the majority
of the instructions of each kernel and all of them could
be offloaded.

e The CIM runtime library overhead is very small, show-
ing that offloading itself is not an issue.

o As the storage and computations happen in the same
place, the CIM offloading is able to reduce the number
of external memory accesses compared to execution on
the host. In the baseline, each multiplication requires
two operands to be loaded from memory, whereas CIM
offloading requires the input data but not the (constant)
weights in a neural network layer.

Due to the lack of sufficient experience with physical im-
plementations of the selected memristor crossbar array, the
simulation model is not yet accurate enough to estimate the
energy savings and performance improvements for offload-
ing. However, similar approaches report significant energy
savings for kernel offloading, e.g., the 8-bit proj-PCM [16],
which requires 6 fJ per 8 bit multiplication (assuming 100 ns

TC-CIM: Empowering Tensor Comprehensions for Computing-In-Memory

MemRead ! MemWrite ™ Host-ALU ops

1+ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ -
0.5 N
@&i&i@% o ";\N@% S
~Q

Figure 7. Instruction breakdown for the baseline without

offloading.

read time provided by an integrated circuit), compared to
0.2 pJ per multiplication for 45 nm CMOS logic (33X higher).

4.4 Discussion

We chose to apply loop tactics after affine scheduling. This
allowed us to use the scheduler to canonicalize the schedule
tree: discover permutability and parallelism properties, co-
alesce input bands into a single band when possible, all to
make the matching patterns simpler. On the downside, the
scheduling algorithm in this case is unaware of the higher-
level information extracted by matchers. As itentified in the
previous experiments, the interplay between Loop Tactics and
the scheduler deserves to be explored further, in particular,
the effects of (re-)scheduling after matching to re-evaluate
fusion decisions or using the matched primitives to guide
tile size selection. Since machine instructions may expect
specific data layout, matched patterns can also guide data
layout transformations.

Exploring this interplay extends to design-space ques-
tions, such as whether affine transformations should be made
smarter or more aggressive to reduce the effort in implement-
ing domain- and target-specific matchers and builders (e.g.,
matchers with fixed tile size, dimension ordering, layout and
alignment constraints, with builders in control of the inner-
most levels of computation and data movement only); or on
the contrary, whether more effective tool flows will result
from limiting the expectations on generic/enabling affine
transformations, communicating with versatile matchers and
builders capable of structured mapping decisions (e.g., tiling,
permutation, orchestrating complex internal control flow
and data transfers).

Based on this analysis, we believe that future work will
blur the boundaries between advanced affine scheduling
heuristics [48], matchers [11, 47], and explicit metapro-
gramming like URUK ([17], CHILL [46], or Halide [33].
Our work advocates for a declarative, constraint-based ap-
proach, where target-specific constraints help guide affine
transformations together with domain- and expert-provided
metaprogramming sketches.

IMPACT 2020, January 22, 2020, Bologna, Italy

MemRead "/ MemWrite I Host-ALU ops
T T T T T T T T T
0.1 N
0.05 - R
0l ‘ ‘ ‘ | | | ‘ ‘ | |
&&“1& ;&“\@/‘&@"i@@ 5

Figure 8. Instruction breakdown with offloading.

5 Related Work

In-memory computing Fujiki et. al. proposed a compiler
framework that lowers Google’s TensorFlow DFG into sim-
pler instructions supported by the in-memory accelera-
tor [15]. During lowering, complex instructions (e.g., division,
exponents, and transcendental functions) are broken down
into a set of LUTs, additions, and multiplications that can be
executed on the crossbar array. The approach also includes
a set of scheduling optimizations to expose instruction and
block-level parallelism. Software pipelining is used to overlap
computation and storage in the CIM crossbar. Ambrosi et. al.
proposed end-to-end software stack to support hybrid ana-
log accelerators for ML that are ISA programmable [1]. The
software stack includes an ONNX [30] back-end for import-
ing models from popular deep-learning frameworks and a
compiler which lower the ONNX description to a custom ISA.
During the lowering phase, the compiler performs a set of
optimizations, such as graph partitioning and tile placement.
The authors present a limited evaluation of their compiler.
Building upon the work of Ambrosi et. al., Ankit et. al. devel-
oped a runtime compiler implemented as C++ library. The
programmer needs to write the application using the library
provided constructs, and the compiler will lower the high-
level code to assembly targeting their own custom ISA [3].
Contrary to previously mentioned works [1, 3, 15] we de-
cided not implement an ISA for our accelerator, the main
reasons are: a) the high non-recurring engineering cost of
developing an ISA, 2) the loss in crossbar density due to the
addition of an hardware decoder. Crossbar density is one
of the workhorse for PCM-based devices and we want to
preserve it [24].

Similar to our adopted approach, other works expose an
API for their accelerator [9, 13, 26, 38]. In the compilation
stage, the API is lowered to data-path configurations, as well
as executing commands with data dependencies and control
flow. However, this approach requires the programmer to
write the entire application using the proposed API, hence
reducing application readiness. On the other hand, in our
approach the API invocation is handled transparently in the
compiler; thus, no changes in the application are needed.

IMPACT 2020, January 22, 2020, Bologna, Italy

Near-memory computing Another computational para-
digm that is promising to overcome the memory wall prob-
lem is near-memory computing, which aims at processing
close to where the data resides. One of the main challenges
in near-memory compilation is to decide which code portion
should be offloaded to the accelerator. Our pattern matching
can be seen as an explicit way of performing code offload-
ing. Other works propose cost-based analysis. Hsieh et. al.
proposed to statically identify code portions with the high-
est potential in bandwidth saving using simple cost func-
tions [21]. Pattanik et. al. proposed an affinity prediction
model relying on memory-related metrics [31]. Hadidi et. al.
identified code region to be offloaded in the context of the
Hybrid Memory Cube using a cache profiler, a compile-time
analysis phase and benefit analysis models [20]. Differen-
tiating from previous work, Nair et. al. rely on the user to
offload code regions that should be marked with OpenMP 4.0
directives [29]. Cost-based analysis can be easily embedded
in our approach as callback functions during matching. One
of the future works will be the integration of a fast analytical
model for associative caches [19] such that we can have a
more sophisticated analysis for offloading profitability.

Broader applications of CIM-tile Clearly, there exist a
wide CIM design space exploring different technological and
architecture tradeoffs. All of them have in common the need
to automatically decompose the computation, data, and com-
munication patterns to suit the hardware constraints. Our
approach offers a portable abstraction to program any such
device, providing automatic tiling and enabling loop trans-
formations specifically suited to the target. Coupling affine
transformations with Tactics provides additional perfor-
mance and specialization through the embedding of target-
specific software or hardware blocks. Moreover, many CIM
designs—including all finite state and analog-based ones—
have in common to expose a limited-functionality APIrather
than a programmable architecture. In addition to enabling
transformations, such architectures strongly depend on Tac-
tics to lower a portable tensor programming layer to target-
specific API calls.

Beyond CIM, and thanks to its declarative nature, the
matcher-based approach extends easily to other kinds of
emerging accelerators with matrix- or tensor-level opera-
tions (e.g., GPU tensor cores). Such devices are often pro-
grammable through driver library calls, featuring the same
interface as numerical libraries, e.g., BLAS. Our approach fa-
cilitates the porting of standard tool flows and programming
models to new hardware accelerators, and also helps improv-
ing performance on existing hardware when aggressively
optimized library implementations are available.

General-purpose (Polyhedral) accelerator mapping

There are a variety of approaches for automatic accelera-
tor programming. At the source level, Par4All [2] uses a
non-polyhedral approach based on abstract interpretation

10

Drebes, et al.

which enables powerful inter-procedural analyses. Polyhe-
dral compilation techniques have first been used for GPU
code generation by Baskaran [6] and have later been im-
proved as part of the R-Stream compiler [25]. An alterna-
tive mapping approach that relies on the counting of inte-
ger points to tightly fill shared memory caches has been
proposed by Baghdadi et. al. [5], but the resulting mem-
ory accesses have been shown to be too costly in practice.
With CUDA-CHILL[34] generating GPU codes based on user
provided scripts has been proposed. The state-of-the-art in
general-purpose polyhedral source-to-source compilation
is ppcg [43, 45], which provides effective GPU mappings
that exploit shared and private memory. The main focus of
these tools is the generation of GPU kernel code from code
following strict programming rules [4].

Offloading from within a compiler has been first pro-
posed by GRAPHITE-OpenCL [23] which allowed for the
static mapping of parallel loops, but did not considering
inter SCoP data reuse. In the context of Polly [18], Kernel-
gen [28] proposed a new approach in which it aims to push
as much execution as possible on the GPU, using the CPU
only for system calls and other program parts not suitable
for the GPU. The final executables are shipped with a so-
phisticated run-time system that supports just-in-time ac-
celerator mapping, parameter specialization and provides a
page-locking based run-time system to move data between
devices. Damschen et. al. [14] introduce a client-server sys-
tem to automatically offload compute kernels to a Xeon-Phi
system. These approaches are based on an early version of
Polly (or GRAPHITE), without support for non-affine sub-
regions, modulo expressions, schedule trees or delineariza-
tion and are consequently limited in the kind of SCoPs they
can detect. Finally, with Hexe [27] a modular data manage-
ment and kernel offloading system was proposed which does
to our understanding not take advantage of polyhedral de-
vice mapping strategies. The presented approaches aim for
general-purpose accelerator mapping and do not consider
the identification and transformation of algorithm specific
constructs.

6 Conclusion

We presented TC-CIM, a fully automatic compilation flow
based on Tensor Comprehensions and Loop Tactics dedicated
to in-memory computation. TC-CIM offers a unique com-
bination of domain-specific optimizations, affine transfor-
mations and target-specific matchers, leveraging schedule
tree abstractions. Our preliminary evaluation on tensor op-
erations frequently occurring in ML kernels confirms the
expressive power and reliable extraction of computational
building blocks offloaded to a simulated memristor array.
We believe these results will support future research and
applications to in-memory computing and beyond, some of
which have been discussed in the paper.

TC-CIM: Empowering Tensor Comprehensions for Computing-In-Memory

Acknowledgments

This work was partially supported by the European Commis-
sion Horizon 2020 programme through the MNEMOSENE
grant agreement, id. 780215 and the NeMeCo grant agree-
ment, id. 676240 as well as through Polly Labs (Xilinx Inc,
Facebook Inc, and ARM Holdings) and the Swiss National
Science Foundation through the Ambizione program.

References
[1] J. Ambrosi, A. Ankit, R. Antunes, S. R. Chalamalasetti, S. Chatterjee, L. E.

[10

—

[t

=

—

—

=

Hajj, G. Fachini, P. Faraboschi, M. Foltin, S. Huang, W. Hwu, G. Knuppe,
S. V. Lakshminarasimha, D. Milojicic, M. Parthasarathy, F. Ribeiro, L.
Rosa, K. Roy, P. Silveira, and J. P. Strachan. 2018. Hardware-Software
Co-Design for an Analog-Digital Accelerator for Machine Learning.
In 2018 IEEE International Conference on Rebooting Computing (ICRC).
1-13. https://doi.org/10.1109/ICRC.2018.8638612

Mehdi Amini, Béatrice Creusillet, Stéphanie Even, Ronan Keryell, Onig
Goubier, Serge Guelton, Janice Onanian McMahon, Frangois-Xavier
Pasquier, Grégoire Péan, and Pierre Villalon. [n.d.]. Par4all: From
convex array regions to heterogeneous computing. In IMPACT: Second
Int. Workshop on Polyhedral Compilation Techniques HiPEAC 2012.
Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu,
Martin Foltin, R. Stanley Williams, Paolo Faraboschi, Wen-mei W
Hwu, John Paul Strachan, Kaushik Roy, and Dejan S. Milojicic. 2019.
PUMA: A Programmable Ultra-efficient Memristor-based Accelerator
for Machine Learning Inference. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’19). ACM, New York, NY,
USA, 715-731. https://doi.org/10.1145/3297858.3304049

Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser,
Michael Kruse, Chandan Reddy, Sven Verdoolaege, Adam Betts, Alas-
tair F. Donaldson, Jeroen Ketema, Javed Absar, Sven Van Haastregt,
Alexey Kravets, Anton Lokhmotov, Robert David, and Elmar Hajiyev.
2015. PENCIL: a Platform-Neutral Compute Intermediate Language
for Accelerator Programming. In International Conference on Parallel
Architectures and Compilation Techniques. San Francisco, US.
Soufiane Baghdadi, Armin Gréflinger, and Albert Cohen. 2010. Putting
Automatic Polyhedral Compilation for GPGPU to Work. In Proceedings
of the 15th Workshop on Compilers for Parallel Computers (CPC’10).
Vienna, Austria. https://hal.inria.fr/inria-00551517

Muthu Manikandan Baskaran,] Ramanujam, and P Sadayappan. 2010.
Automatic C-to-CUDA code generation for affine programs. In Com-
piler Construction. Springer.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. The
Gemb5 Simulator. SIGARCH Comput. Archit. News 39, 2 (Aug. 2011),
1-7. https://doi.org/10.1145/2024716.2024718

L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G.
Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K.
Remington, and R. C. Whaley. 2001. An Updated Set of Basic Linear
Algebra Subprograms (BLAS). 28 (2001), 135-151.

M. N. Bojnordi and E. Ipek. 2016. Memristive Boltzmann machine: A
hardware accelerator for combinatorial optimization and deep learn-
ing. In 2016 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA). 1-13. https://doi.org/10.1109/HPCA.2016.
7446049

S. Borkar. 2013. Exascale computing - A fact or a fiction?. In 2013 IEEE
27th International Symposium on Parallel and Distributed Processing.
3-3. https://doi.org/10.1109/IPDPS.2013.121

11

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

IMPACT 2020, January 22, 2020, Bologna, Italy

Oleksandr; Grosser Tobias; Corporaal Henk Chelini, Lorenzo; Zinenko.
2019. Declarative Loop Tactics for Domain-Specific Optimization.
ACM TACO 16, 4 (Dec. 2019). https://doi.org/10.1145/3372266
Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An
Automated End-to-End Optimizing Compiler for Deep Learning. In
13th USENIX Symp. on Operating Systems Design and Implementation
(OSDI 18). USENIX Association, Carlsbad, CA, 578-594. https://www.
usenix.org/conference/osdi18/presentation/chen

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie. 2016.
PRIME: A Novel Processing-in-Memory Architecture for Neural Net-
work Computation in ReRAM-Based Main Memory. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA).
27-39. https://doi.org/10.1109/ISCA.2016.13

Marvin Damschen, Heinrich Riebler, Gavin Vaz, and Christian Plessl.
2015. Transparent Offloading of Computational Hotspots from Binary
Code to Xeon Phi. In Proc. of the 2015 Design, Automation & Test in
Europe Conf. & Exh (DATE ’15). EDA Consortium, 1078-1083. http:
//dl.acm.org/citation.cfm?id=2757012.2757063

Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2018. In-Memory
Data Parallel Processor. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’18). ACM, New York, NY, USA, 1-14.
https://doi.org/10.1145/3173162.3173171

1. Giannopoulos, A. Sebastian, M. Le Gallo, V. P. Jonnalagadda, M.
Sousa, M. N. Boon, and E. Eleftheriou. 2018. 8-bit Precision In-Memory
Multiplication with Projected Phase-Change Memory. In 2018 IEEE
International Electron Devices Meeting (IEDM). 27.7.1-27.7.4. https:
//doi.org/10.1109/IEDM.2018.8614558

Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David
Parello, Marc Sigler, and Olivier Temam. 2006. Semi-Automatic Com-
position of Loop Transformations for Deep Parallelism and Memory
Hierarchies. International Journal of Parallel Programming 34, 3 (2006),
261-317. https://doi.org/10.1007/s10766-006-0012-3

Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012.
Polly - performing polyhedral optimizations on a low-level interme-
diate representation. Parallel Processing Letters 22, 04 (2012), 1250010.
Tobias Gysi, Tobias Grosser, Laurin Brandner, and Torsten Hoefler.
2019. A fast analytical model of fully associative caches. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 816-829.

Ramyad Hadidi, Lifeng Nai, Hyojong Kim, and Hyesoon Kim. 2017.
CAIRO: A Compiler-Assisted Technique for Enabling Instruction-Level
Offloading of Processing-In-Memory. ACM Trans. Archit. Code Optim.
14, 4, Article 48 (Dec. 2017), 25 pages. https://doi.org/10.1145/3155287
K. Hsieh, E. Ebrahim, G. Kim, N. Chatterjee, M. O’Connor, N. Vi-
jaykumar, O. Mutlu, and S. W. Keckler. 2016. Transparent Offload-
ing and Mapping (TOM): Enabling Programmer-Transparent Near-
Data Processing in GPU Systems. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). 204-216.
https://doi.org/10.1109/ISCA.2016.27

Vinay Joshi, Manuel Le Gallo, Irem Boybat, Simon Haefeli, Christophe
Piveteau, Martino Dazzi, Bipin Rajendran, Abu Sebastian, and Evange-
los Eleftheriou. 2019. Accurate deep neural network inference using
computational phase-change memory. arXiv:cs.ET/1906.03138

A Kravets, A Monakov, and A Belevantsev. 2010. GRAPHITE-OpenCL:
Automatic parallelization of some loops in polyhedra representation.
GCC Developers’ Summit, GCC Developers’ Summit (2010).

M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers, and E. Eleftheriou.
2018. Compressed Sensing With Approximate Message Passing Using
In-Memory Computing. IEEE Transactions on Electron Devices 65, 10
(Oct 2018), 4304-4312. https://doi.org/10.1109/TED.2018.2865352

https://doi.org/10.1109/ICRC.2018.8638612
https://doi.org/10.1145/3297858.3304049
https://hal.inria.fr/inria-00551517
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/HPCA.2016.7446049
https://doi.org/10.1109/HPCA.2016.7446049
https://doi.org/10.1109/IPDPS.2013.121
https://doi.org/10.1145/3372266
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1109/ISCA.2016.13
http://dl.acm.org/citation.cfm?id=2757012.2757063
http://dl.acm.org/citation.cfm?id=2757012.2757063
https://doi.org/10.1145/3173162.3173171
https://doi.org/10.1109/IEDM.2018.8614558
https://doi.org/10.1109/IEDM.2018.8614558
https://doi.org/10.1007/s10766-006-0012-3
https://doi.org/10.1145/3155287
https://doi.org/10.1109/ISCA.2016.27
http://arxiv.org/abs/cs.ET/1906.03138
https://doi.org/10.1109/TED.2018.2865352

IMPACT 2020, January 22, 2020, Bologna, Italy

[25]

[27]

(28]

[29]

(30]

(31]

(32
(33]

—

(34]

(36]

(37]

Allen Leung, Nicolas Vasilache, Benoit Meister, Muthu Baskaran, David
Wohlford, Cédric Bastoul, and Richard Lethin. 2010. A Mapping
Path for multi-GPGPU Accelerated Computers from a Portable High
Level Programming Abstraction. In Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units (GPGPU-3).
ACM, New York, NY, USA, 51-61. https://doi.org/10.1145/1735688.
1735698

S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie. 2016. Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories. In 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC). 1-6. https://doi.org/10.1145/2897937.
2898064

Christos Margiolas. 2015. A Heterogeneous Execution Engine for
LLVM. LLVM Developers Meeting (2015).

Dmitry Mikushin, Nikolay Likhogrud, Zheng (Eddy) Zhang, and
Christopher Bergstrom. 2014. KernelGen — The Design and Imple-
mentation of a Next Generation Compiler Platform for Accelerating
Numerical Models on GPUs. In Parallel & Distributed Processing Sym-
posium Workshops (IPDPSW).

R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen,
C. . Cher, C. H. A. Costa, J. Doi, C. Evangelinos, B. M. Fleischer, T. W.
Fox, D. S. Gallo, L. Grinberg, J. A. Gunnels, A. C. Jacob, P. Jacob,
H. M. Jacobson, T. Karkhanis, C. Kim, J. H. Moreno, J. K. O’Brien,
M. Ohmacht, Y. Park, D. A. Prener, B. S. Rosenburg, K. D. Ryu, O.
Sallenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam, and Z. Sura.
2015. Active Memory Cube: A processing-in-memory architecture for
exascale systems. IBM Journal of Research and Development 59, 2/3
(March 2015), 17:1-17:14. https://doi.org/10.1147/JRD.2015.2409732
ONN. [n.d.]. Open Neural Network Exchange Home Page.
https://onnx.ai/ (Nov. 2019).

A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir,
O. Mutlu, and C. R. Das. 2016. Scheduling techniques for GPU archi-
tectures with processing-in-memory capabilities. In 2016 International
Conference on Parallel Architecture and Compilation Techniques (PACT).
31-44. https://doi.org/10.1145/2967938.2967940

PlaidML 2018. PlaidML. https://www.intel.ai/plaidml.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
guage and Compiler for Optimizing Parallelism, Locality, and Re-
computation in Image Processing Pipelines. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’13). ACM, New York, NY, USA, 519-530.
https://doi.org/10.1145/2491956.2462176

Gabe Rudy, MalikMurtaza Khan, Mary Hall, Chun Chen, and Jacque-
line Chame. 2011. A Programming Language Interface to Describe
Transformations and Code Generation. In Languages and Compilers for
Parallel Computing, Keith Cooper, John Mellor-Crummey, and Vivek
Sarkar (Eds.). Lecture Notes in Computer Science, Vol. 6548. Springer
Berlin Heidelberg, 136-150. https://doi.org/10.1007/978-3-642-19595-
2.10

Abu Sebastian, Manuel Le Gallo, and Evangelos Eleftheriou. 2019.
Computational phase-change memory: beyond von Neumann com-
puting. Journal of Physics D: Applied Physics 52, 44 (aug 2019), 443002.
https://doi.org/10.1088/1361-6463/ab37b6

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar. 2016. ISAAC: A Convo-
lutional Neural Network Accelerator with In-Situ Analog Arithmetic
in Crossbars. In 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA). 14-26. https://doi.org/10.1109/ISCA.
2016.12

Gagandeep Singh, Lorenzo Chelini, Stefano Corda, Ahsan Javed Awan,
Sander Stuijk, Roel Jordans, Henk Corporaal, and Albert-Jan Boonstra.
2019. Near-memory computing: Past, present, and future. Micropro-
cessors and Microsystems 71 (2019), 102868.

12

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Drebes, et al.

L. Song, X. Qian, H. Li, and Y. Chen. 2017. PipeLayer: A Pipelined
ReRAM-Based Accelerator for Deep Learning. In 2017 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
541-552. https://doi.org/10.1109/HPCA.2017.55

Daniele G. Spampinato and Markus Piischel. 2014. A Basic Linear
Algebra Compiler. In International Symposium on Code Generation and
Optimization (CGO). 23-32.

Leonard Truong, Rajkishore Barik, Ehsan Totoni, Hai Liu, Chick
Markley, Armando Fox, and Tatiana Shpeisman. 2016. Latte: A Lan-
guage, Compiler, and Runtime for Elegant and Efficient Deep Neural
Networks. In Proc. of the 37th ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI’'16). ACM, New York, NY,
209-223. https://doi.org/10.1145/2908080.2908105

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary Devito, William S. Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. 2019. The Next 700 Accelerated Layers:
From Mathematical Expressions of Network Computation Graphs to
Accelerated GPU Kernels, Automatically. ACM Trans. Archit. Code
Optim. 16, 4, Article 38 (Oct. 2019), 26 pages. https://doi.org/10.1145/
3355606

Sven Verdoolaege. 2010. isl: An Integer Set Library for the Polyhedral
Model. In Mathematical Software - ICMS 2010, Komei Fukuda, Joris
Hoeven, Michael Joswig, and Nobuki Takayama (Eds.). Lecture Notes
in Computer Science, Vol. 6327. Springer, 299-302.

Sven Verdoolaege. 2015. PENCIL support in pet and PPCG. Technical
Report RT-0457. INRIA Paris-Rocquencourt. https://hal.inria.fr/hal-
01133962

Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen.
2014. Schedule trees. In International Workshop on Polyhedral Compila-
tion Techniques, Date: 2014/01/20-2014/01/20, Location: Vienna, Austria.
Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio
Goémez, Christian Tenllado, and Francky Catthoor. 2013. Polyhe-
dral parallel code generation for CUDA. ACM Transactions on Ar-
chitecture and Code Optimization 9, 4 (Jan. 2013), 54:1-54:23. https:
//doi.org/10.1145/2400682.2400713

Huihui Zhang, Anand Venkat, Protonu Basu, and Mary Hall. 2016.
Combining Polyhedral and AST Transformations in CHiLL. In IMPACT
Workshop.

Oleksandr Zinenko, Lorenzo Chelini, and Tobias Grosser. 2018. Declar-
ative Transformations in the Polyhedral Model. Research Report RR-
9243. Inria ; ENS Paris - Ecole Normale Supérieure de Paris ; ETH
Zurich ; TU Eindhoven ; IBM Ziirich. https://hal.inria.fr/hal-01965599
Oleksandr Zinenko, Sven Verdoolaege, Chandan Reddy, Jun Shirako,
Tobias Grosser, Vivek Sarkar, and Albert Cohen. 2018. Modeling the
conflicting demands of parallelism and Temporal/Spatial locality in
affine scheduling. In Proceedings of the 27th International Conference on
Compiler Construction, CC 2018, February 24-25, 2018, Vienna, Austria.
3-13. https://doi.org/10.1145/3178372.3179507

https://doi.org/10.1145/1735688.1735698
https://doi.org/10.1145/1735688.1735698
https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1147/JRD.2015.2409732
https://doi.org/10.1145/2967938.2967940
https://www.intel.ai/plaidml
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1007/978-3-642-19595-2_10
https://doi.org/10.1007/978-3-642-19595-2_10
https://doi.org/10.1088/1361-6463/ab37b6
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/HPCA.2017.55
https://doi.org/10.1145/2908080.2908105
https://doi.org/10.1145/3355606
https://doi.org/10.1145/3355606
https://hal.inria.fr/hal-01133962
https://hal.inria.fr/hal-01133962
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713
https://hal.inria.fr/hal-01965599
https://doi.org/10.1145/3178372.3179507

	Abstract
	1 Introduction
	2 Tensor Comprehensions and Loop Tactics
	2.1 Tensor Comprehensions
	2.2 Schedule Trees
	2.3 Loop Tactics

	3 TC-CIM
	3.1 Outline of the modified compilation flow
	3.2 Matching

	4 Evaluation
	4.1 CIM Architecture
	4.2 Benchmarks and Workloads
	4.3 Kernel Experiments
	4.4 Discussion

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

