
Falcon: A Scalable Analytical Cache Model
ARJUN PITCHANATHAN, University of Edinburgh, UK

KUNWAR GROVER∗, Advanced Micro Devices, UK

TOBIAS GROSSER†, University of Cambridge, UK

Compilers often use performance models to decide how to optimize code. This is often preferred over using

hardware performance measurements, since hardware measurements can be expensive, limited by hardware

availability, andmakes the output of compilation non-deterministic. Analytical models, on the other hand, serve

as efficient and noise-free performance indicators. Since many optimizations focus on improving memory

performance, memory cache miss rate estimations can serve as an effective and noise-free performance

indicator for superoptimizers, worst-case execution time analyses, manual program optimization, and many

other performance-focused use cases. Existing methods to model the cache behavior of affine programs

work on small programs such as those in the Polybench benchmark but do not scale to the larger programs

we would like to optimize in production, which can be orders of magnitude bigger by lines of code. These

analytical approaches hand off the whole program to a Presburger solver and perform expensive mathematical

operations on the huge resulting formulas. We develop a scalable cache model for affine programs that splits

the computation into smaller pieces that do not trigger the worst-case asymptotic behavior of these solvers.

We evaluate our approach on 46 TorchVision neural networks, finding that our model has a geomean runtime

of 44.9 seconds compared to over 32 minutes for the state-of-the-art prior cache model, and the latter is

actually smaller than the true value because the prior model reached our four-hour time limit on 54% of the

networks, and this limit was never reached by our tool. Our model exploits parallelism effectively: running it

on sixteen cores is 8.2x faster than running it single-threaded. While the state-of-the-art model takes over four

hours to analyze a majority of the benchmark programs, Falcon produces results in at most 3 minutes and 3

seconds; moreover, after a local modification to the program being analyzed, our model efficiently updates the

predictions in 513ms on average (geomean). Thus, we provide the first scalable analytical cache model.

CCS Concepts: • Software and its engineering→ Compilers.

Additional Key Words and Phrases: static analysis, performance analysis, cache modeling

ACM Reference Format:
Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser. 2024. Falcon: A Scalable Analytical Cache Model.

Proc. ACM Program. Lang. 8, PLDI, Article 222 (June 2024), 25 pages. https://doi.org/10.1145/3656452

1 INTRODUCTION
Compilers often use performance models to evaluate and compare different optimized versions

of code [Adams et al. 2019; Chen et al. 2018b; Jia et al. 2020; Kaufman et al. 2021; Narayanan et al.

2019]. This is often preferred over collecting performance measurements from a real machine as the

latter can be expensive, limited by hardware availability, or infeasible (such as during ahead-of-time

∗
Work done while a student at IIIT Hyderabad and visiting the University of Edinburgh.

†
Work primarily done while at the University of Edinburgh.

Authors’ addresses: Arjun Pitchanathan, University of Edinburgh, UK, arjun.pitchanathan@ed.ac.uk; Kunwar Grover,

Advanced Micro Devices, UK, KunwarShaanjeetSingh.Grover@amd.com; Tobias Grosser, University of Cambridge, UK,

tobias.grosser@cst.cam.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART222

https://doi.org/10.1145/3656452

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

https://doi.org/10.1145/3656452
https://doi.org/10.1145/3656452

222:2 Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser

compilation). Moreover, hardware measurements are non-deterministic, which can result in a lack

of reproducibility. Even when hardware measurements are used to compare candidate versions of

the code, performance models are often used to generate a short list of potential candidates. Both

LLVM’s [LLVM Contributors [n. d.]] and GCC’s [GCC Contributors [n. d.]] auto-vectorizers use

cost models to choose which optimizations to apply or to choose the parameters of the optimization

pass to apply such as the unroll factor. Many important optimizations such as operator fusion and

loop tiling primarily focus on improving memory performance, and would therefore benefit from a

memory performance model to decide when and how to apply these optimizations.

We present Falcon, a scalable analytical performance model for memory cache performance.

Falcon outputs a predicted cache miss rate for each statement in a given affine program. We

evaluate our tool on a benchmark of 46 TorchVision [Marcel and Rodriguez 2010] neural networks

(Section 5.1), finding that it returns results in 44.9 seconds on average (geomean). While there

has been prior work on analytical cache modeling [Gysi et al. 2019; Morelli and Reineke 2022], it

focused on small single-kernel applications and did not scale to large programs; in a majority of

the TorchVision benchmarks, these tools take over four hours per program.

20 40 60 80 100
program size (matmuls)

1m

10m

20m

Runtime
Warping
Haystack
Falcon

Fig. 1. Both the SOTA cache models scale poorly with
the size of the program, whereas Falcon scales well.
This data was collected by generating programs with
a succession of matrix multiplications and running all
three models on these. See Section 5.2 for details.

Prior analytical approaches are slow because

the first step they perform is to convert the en-

tire input program into one big formula in Pres-

burger arithmetic [Haase 2018]. Unfortunately,

solving Presburger formulas does not scale well

with formula size. We propose a more surgi-

cal approach that traverses a structured loop

representation of the program and only uses

the more expensive mathematical optimization

algorithms to model relationships between spe-

cific statements in the source code. Combining

an AST-based approach with the Presburger-

based methods [Shirako et al. 2014] enables

greater performance.

Moreover, for each statement, we overap-

proximate the region of code that can affect its

cache performance, greatly reducing the num-

ber of pairs of statements that we need to consider. Thus, for practically relevant cache configu-

rations and programs, we end up comparing each statement against a constant number of other

statements instead of against the whole program. Our algorithm scales far better than existing

approaches (Figure 1). In addition, our tool computes the miss rate prediction for each statement

separately, and so is highly parallelizable across statements.

Our tool provides the ability to trade-off between speed and accuracy by using our partial

linearization feature (Section 4.8). With this enabled, our geomean runtime becomes 3m47s, as

compared to at least 32 minutes for the baselines (capped by the four-hour timeout). We obtain a

correlation of 0.98 between our miss rate predictions and the real hardware measurements.

Our model supports efficiently updating the cache results after local changes to the program,

which would be useful for applications in search space exploration and performance engineering.

We achieve this by again leveraging a distance-based optimization, using the AST representation

to detect and prune irrelevant computations. Using this, we narrow down a small set of statements

whose cache performance could possibly be affected by the modification. We now use the fact that

our algorithm models each statement separately to precisely recompute results for only the small

set of statements that we have narrowed down to.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

Falcon: A Scalable Analytical Cache Model 222:3

In summary, we contribute an analytical cache model that

• is scalable (Section 5.4),

• gives predictions well-correlated to real measurements (Section 5.3),

• can efficiently update its predictions after local program modifications (Section 5.4.2), and

• is highly parallelizable (Section 5.4.1).

2 BACKGROUND
We describe the tools we use: the theory of Presburger arithmetic and polyhedral compilation.

for i = 0 to 3
load arr[i] # S1

for j = 0 to 3
load arr[j] # S2

S1(0) S1(1) S1(2) S1(3) S2(0) S2(1) S2(2)

reuse source

S2(3)

arr[0] arr[1] arr[2] arr[3] arr[0] arr[1] arr[2] arr[3]

reuse lines (elements)
reuse distance = #unique reuse lines = 3

S1(0) S1(1) S1(2) S1(3) S2(0) S2(1) S2(2)

reuse source

S2(3)

arr[0] arr[1] arr[2] arr[3] arr[0] arr[1] arr[2] arr[3]

Fig. 2. Example program to illustrate terminology.

2.1 Affine Programs
We model affine programs, a class of programs that includes important applications like neural

networks, image processing, and scientific computing. These programs have an important and

useful property: they have no data-dependent branches and all branch conditions are affine. i.e.,
they are conjunctions and disjunctions of affine inequalities, of the form 𝑎1𝑥1 + . . . 𝑎𝑛𝑥𝑛 ≥ 𝑐 . These

are programs that can be represented as loop nests whose induction variables are incremented by

a constant step size, and are constrained only by affine inequalities that depend solely on outer

loop induction variables. Moreover, the bodies of loops contain only memory accesses whose

index expressions are affine in the outer loop induction variables. Finally, the loop body may have

branching control flow, but the branching condition must be an affine expression in the outer

induction variables.
1

Figure 2 shows two loops, each with one statement, 𝑆1 and 𝑆2 respectively. In general when

we refer to statements in this work, we are referring to statements that access (load from or store

to) memory, as all other statements (except control flow) can be ignored for the purpose of cache

modeling. 𝑆1 is executed once for each value of 𝑖 in the set {𝑖 ∈ Z | 0 ≤ 𝑖 ≤ 3}. This set is called the
iteration domain of S1, which we denote as I𝑆1. We will omit the requirement that 𝑖 be an integer

going forward as all numbers we deal with will be integers. 𝑆2’s iteration domain is { 𝑗 | 0 ≤ 𝑗 ≤ 7}.
Each execution of 𝑆1 for a given 𝑖 , denoted 𝑆1(𝑖), is called an instance of the statement S1.

We implement our model on the program AST of a static single-assignment (SSA) based domain-

specific intermediate representation (IR) that models such affine programs at the correct level

of abstraction. The language’s AST preserves lexical control-flow structures like for loops and if

conditions. Each memory access instruction canonically performs a single load or store, reducing

the ambiguity in ordering that arises when a single line contains multiple memory accesses. The

1
While a more general notion of affine programs supports all these depending on some program parameters as well, we do
not deal with this case in the present work.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

222:4 Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser

MLIR compiler infrastructure [Lattner et al. 2021] introduced a domain-specific intermediate

representation called the Affine dialect that satisfies these criteria, which we use in our prototype;

it can look quite similar to the pseudocode in the example above. We design our cache modeling

algorithm to operate on such an AST.

2.2 Terminology
Consider a single-level, fully associative cache with 𝐶 cache lines. Given a statement instance 𝑆 (i)
that performs a memory access, we classify it as either a cache hit or a miss.

Definition 2.1. Reuse source of a statement instance 𝑆 (p): the most recent access to the same
cache line as 𝑆 (p). Undefined if 𝑆 (p) makes the first access to that cache line.

Say every cache line contains exactly one array element. Then in the example, the reuse source of

𝑆2(3) is 𝑆1(3), as 𝑆1(3) accesses the same array element arr[3] as 𝑆2(3), and moreover is the most

recently executed statement instance that accesses that element. When we generalize to multiple

elements per cache line, we will compare on the basis of the cache lines that statements access

instead of the array elements. If the reuse source of 𝐴 is undefined then 𝐴 is a miss and is called a

compulsory miss.

Definition 2.2. Compulsory miss: a miss caused by the first access to a cache line. Such a miss
would occur in any single-level LRU cache irrespective of cache size.

In the example, 𝑆1(3) has no reuse source as it accesses its location for the first time, so it incurs

a compulsory miss. If the reuse source is defined, we need to analyze further. In such a case the

number of cache lines accessed between the instance and its reuse source is called its reuse distance.

Definition 2.3. Reuse distance of a statement instance 𝑆 (p): the number of unique cache
lines accessed between 𝑆 (p) and its reuse source. Denoted by reuseDist(𝐴). Not defined if 𝑆 (p) has
no reuse source.

In the example, the reuse distance of 𝑆2(3) is 3. If 𝑆 (p) does not compulsorily miss, then it incurs

a miss iff reuseDist(𝐴) ≥ cacheSize. Such a miss is called a capacity miss. was

Definition 2.4. Capacity miss: a miss that is not compulsory, which would not occur if the
capacity of the cache was increased to exceed the reuse distance.

If cacheSize = 3 then 𝑆2(3) incurs a capacity miss. If cacheSize ≥ 4 then we hit the cache. We

now define some general terminology. Bold-faced variables like i, p, q denote tuples. Subscripts like

i𝑎 denote the a-th element in i and i𝑎:𝑏 denotes the subrange of i from 𝑎 to 𝑏 (both 1-indexed and

inclusive). I is the set of all instances of all statements in the program under consideration, and I𝑆
denotes the set of all instances of a particular statement 𝑆 .

2.3 Presburger Arithmetic
We analyze affine programs with static control flow. Such programs can be modeled conveniently

using Presburger arithmetic. For example, the iteration domain {𝑖 ∈ Z | 0 ≤ 𝑖 ≤ 3} of 𝑆1 in Figure 2

can be expressed in this theory. The worst-case complexity of deciding Presburger formulas is at

least double-exponential [Fischer and Rabin 1998], but these operations are efficient in practice for

small formulas.

A Presburger set over 𝑛 variables 𝑥1, . . . 𝑥𝑛 ∈ Z is defined by a Presburger formula 𝑃 , which is any

logical formula involving affine inequalities like

∑
𝑖 𝑎𝑖𝑥𝑖 ≥ 𝑐 . The formula may involve existential

quantifiers. We can also express floor divisions and modulos of an affine expression by a constant.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

Falcon: A Scalable Analytical Cache Model 222:5

Presburger relations are defined similarly, except that the variables are partitioned into domain

and range variables.

We use the following operations on sets and relations:

• intersection, union, set complement, and set difference

• inverting and composing relations

• computing the domain and range of a relation

• computing the maximum and minimum value of an affine expression over elements in a

Presburger set [Lovász and Scarf 1992]

• computing the lexicographically minimum and maximum elements in a set [Feautrier 1988]

• computing the parametric cardinality of a relation, obtaining a mapping from each domain

element to the cardinality of the image of that element [Verdoolaege et al. 2007], represented

as a piece-wise polynomial over the domain variables of the relation and floor divisions

thereof

We implement our model using the MLIR Presburger library [Pitchanathan et al. 2021] to convert

the Affine IR to Presburger sets and relations, and then pass these on to the isl [Verdoolaege 2010]

and barvinok [Verdoolaege 2007] libraries to handle the set operations.

3 LIMITATIONS AND HARDWARE MODEL
Modern caches implement complex and usually undocumented policies that define their exact

behavior. For example, the replacement policies of common Intel and AMD CPUs have not been

publicly disclosed to the best of our knowledge; we model a Least-Recently Used replacement

policy [Patterson and Hennessy 2013]. We do not support multi-threading or shared caches due

to interference from other cores; the noise and non-determinism inherent in the multi-threaded

setting makes performance estimation less viable. We do not model prefetchers. We ignore registers

and register spilling and support a write-through write-allocate write policy. Finally, we model fully

associative cache hierarchies with support for both inclusive and exclusive hierarchical caches. As

such, we model compulsory and capacity misses, and do not model conflict misses. In this work, we

show that a model of such caches is capable of giving results that are accurate and well-correlated

to measurements on real hardware (Section 5.3).

We assume that arrays do not alias; this is typically the case in code generated from domain-

specific compilation frameworks to accelerate performance-critical applications. The presence

of aliasing arrays would likely prevent most code transformations, so information about cache

performance has less utility in such settings. Finally, our cache model is designed to support affine

programs as defined in Section 2.1.

4 ALGORITHM
We first describe our algorithm for a single-level cache where the size of each array element is

equal to the size of a cache line. We then show how to extend this to cache lines containing

multiple elements and multi-level cache hierarchies. Finally, we describe further optimizations to

the algorithm.

To keep the paper self-contained, we explain all parts of the algorithm that are necessary to put

our contributions into context. The elements novel to the present work are:

• the idea of breaking down the problem into smaller sub-parts, rather than operating on

one big Presburger formula, in particular by leveraging dependence analysis techniques

(Section 4.3), thus improving performance and enabling parallelism (Section 4.2),

• a number of distance-based optimizations (Section 4.4), including adding support for incre-

mental recomputation of predictions after local modifications to the program (Section 4.4.3),

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

222:6 Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser

Algorithm 1 High-level outline of the algorithm for single-level caches. We then describe an

efficient implementation of these steps (Section 4.1), generalization of the model (Section 4.8), and

further optimizations (Section 4.5, Section 4.4).

1: function ComputeCacheMissCount(program 𝑃 , cache size 𝐶)

2: compulsoryMisses← 0, capacityMisses← 0

3: for statement Sink ∈ 𝑃 do
4: deps← ComputeCacheDependences(Sink)
5: compulsoryMisses += #{Sink(p) ∈ ISink | deps(Sink(p)) is undefined}
6: reuseInstances← {(Sink(p),𝑈 (r)) ∈ domain(deps) ×I | Sink(p) ≺ 𝑈 (r) ≺ deps(Sink(p))}
7: reuseLines← reuseInstances ◦ access
8: capacityMisses += #{Sink(p) ∈ domain(deps) | #reuseLines(Sink(p)) ≥ 𝐶}
9: return compulsoryMisses + capacityMisses

• two optimizations to the threshold counting component (Section 4.5), and

• the partial linearization feature to improve accuracy (Section 4.8).

4.1 Algorithm for Single-Level Cache
The algorithm analytically obtains the same results that a simulation would, but handles all accesses

performed by a single memory access statement Sink in a loop nest at the same time. Thus, the

runtime depends on the program size (number of memory access statements in 𝑃) rather than the

number of memory accesses in its execution trace.

for i = 0 to 3
load arr[i] # Statement S1

for j = 0 to 7
load arr[j] # Statement S2

Listing 1. Example input for Algorithm 1.

A high-level overview of the algorithm is pre-

sented in Algorithm 1. We loop through each

memory access statement Sink in the program

and compute its cache miss count separately.

Computing dependences. We first com-

pute the dependence relation for the sink deps :

ISink → I, which is a partial function mapping

each statement instance Sink(i) to its reuse

source, when one exists (Line 4). The details of

this computation are described in Section 4.3.

For example, let’s analyze Figure 1 with statement S2 as the sink. Its set of statement instances is

I𝑆2 = {𝑆2(𝑗) | 𝑗 ∈ {0, 7}}. We then have

𝑑𝑒𝑝𝑠 (𝑆2(𝑗)) =
{
𝑆1(𝑗), 0 ≤ 𝑗 ≤ 3

undefined, 4 ≤ 𝑗 ≤ 7

Counting compulsory misses. Statement instances accessing a cache line for the first time

correspond to compulsory misses, so we add their count to the compulsory misses (Line 5). In the

example, we have

compulsory miss count for 𝑆2 = #{ 𝑗 ∈ {0, . . . 7} | deps(𝑆2(𝑗)) = undefined}
= #{ 𝑗 ∈ {0, . . . 7} | 4 ≤ 𝑗 ≤ 7}
= 4

Computing reuseInstances. Using the dependence relation, we compute (Line 6) a relation

reuseInstances mapping each instance Sink(p) to the set of statement instances of the program

that are executed between Sink(p) and its reuse source (not including the dependence). To compute

this, we use the fact that the execution ordering between statements is expressible in Presburger

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

Falcon: A Scalable Analytical Cache Model 222:7

arithmetic (Section 4.6). The symbol ≺ refers to comparison under this ordering. In the example,

𝑆1(𝑖) ≺ 𝑆2(𝑗) for all valid values of 𝑖 and 𝑗 , 𝑆1(𝑖1) ≺ 𝑆1(𝑖2) iff 𝑖1 < 𝑖2, and similarly 𝑆2(𝑗1) ≺ 𝑆2(𝑗2)
iff 𝑗1 < 𝑗2. Let’s first compute the instances of 𝑆1 that lie in reuseInstances(𝑆2(𝑗)) for each
instance 𝑆2(𝑗) of 𝑆2. Noting that the domain of reuseInstances is only those instances of 𝑆2 that

have reuse sources, we obtain

{𝑆1(𝑖) ∈ I𝑆1 | deps(𝑆2(𝑗)) ≺ 𝑆1(𝑖) ≺ 𝑆2(𝑗)}
= {𝑆1(𝑖) ∈ I𝑆1 | 𝑆1(𝑗) ≺ 𝑆1(𝑖) ≺ 𝑆2(𝑗)} (definition of deps)

= {𝑆1(𝑖) ∈ I𝑆1 | 𝑆1(𝑗) ≺ 𝑆1(𝑖)} (𝑆1 always precedes 𝑆2)

= {𝑆1(𝑖) ∈ I𝑆1 | 𝑗 < 𝑖} (definition of ≺)
= {𝑆1(𝑗 + 1) . . . 𝑆1(3)}, (definition of I𝑆1; if 𝑗 = 3 then the set is empty)

where the last equality is because the set of instances of 𝑆1 is I𝑆1 = {𝑆1(0), 𝑆1(1), 𝑆1(2), 𝑆1(3)}. By
doing a similar calculation for the 𝑆2 reuse instances, we obtain that the set of instances of 𝑆2 in

reuseInstances(𝑆2(𝑗)) is {𝑆2(0) . . . 𝑆2(𝑗 − 1)}, so that overall, we obtain

reuseInstances(𝑆2(𝑗)) = {𝑆1(𝑗 + 1), . . . 𝑆1(3)} ∪ {𝑆2(0) . . . 𝑆2(𝑗 − 1)}.

Computing reuseLines. The next functionwe need is access, whichmaps any statement instance

to the memory location it accesses. In our example, access(𝑆1(𝑖)) = arr[i] and access(𝑆2(𝑖)) =
arr[i]. Composing reuseInstances with access gives reuseLines (Line 7), the set of array

locations accessed between a sink statement instance and the most recent access to the same cache

line. In the example,

reuseLines(𝑆2(𝑗)) = {arr[j + 1], . . . arr[3]} ∪ {arr[0], . . . arr[j − 1]}
= {arr[i] | 𝑖 ∈ {0, 3} ∧ 𝑖 ≠ 𝑗}

Computing reuse distances and counting capacity misses. For each sink instance, the number

of such cache lines, the cardinality #𝑟𝑒𝑢𝑠𝑒𝐿𝑖𝑛𝑒𝑠 (Sink(p)), is equal to the reuse distance of Sink(p).
The memory access performed by the instance misses the cache iff this distance is at least the size

of the cache (Section 2.2), so we count the number of such instances and add that to the number of

capacity misses. In our simple example, the reuse distance is the same for all instances of 𝑆2:

#reuseLines(𝑆2(𝑗)) = {arr[i] | 𝑖 ∈ {0, 3} ∧ 𝑖 ≠ 𝑗}
= 3.

In this step, if multiple statement instances had accessed the same array element, it would be

counted only once. We count the number of unique array locations here. Let’s say the cache

contains two cache lines and, for now, we have assumed that each cache line corresponds to exactly

one array element. Then we have

capacity miss count for 𝑆2 = #{𝑆2(𝑗) ∈ I𝑆2 | #reuseLines(𝑆2(𝑗)) ≥ 2}
= {𝑆2(𝑗) ∈ I𝑆2 | 3 ≥ 2}
= #I𝑆2
= 4.

Finally, we return the total number of compulsory and capacity misses across all statements in the

program – in our example, this is 4 + 4 = 8 misses.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

222:8 Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser

4.2 Parallelism
Note that each sink is handled independently, so the whole algorithm is embarrassingly parallel over

the choice of the sink statement. No prior model was capable of exploiting parallelism. Running the

algorithm on 16 threads gives a geomean speedup of 8.2x over a single-threaded run (Section 5.4.1).

Algorithm 2 Dependence analysis for a single instance.

1: function ComputeCacheDependences(program 𝑃 , statement instance Sink(p))
2: deps← {}
3: loc← the location that Sink(p) accesses.
4: Let 𝐿1, . . . 𝐿𝑛 be the loops surrounding Sink in increasing order of depth.

5: for 𝑖 = 𝑛 to 1 do
6: Let S𝑎𝑏𝑜𝑣𝑒 be the set of statements in 𝐿𝑖 lying above Sink and in fact lying above 𝐿𝑖+1 (if 𝑖 < 𝑛).

7: Let I𝑎𝑏𝑜𝑣𝑒 be the set of instances of statements in S𝑎𝑏𝑜𝑣𝑒 that execute in
• the same iterations of 𝐿1, . . . 𝐿𝑖 as Sink(p).

8: if any instances in I𝑎𝑏𝑜𝑣𝑒 access loc then
9: return the last-executed such instance.

10:

11: Let I𝑝𝑟𝑒𝑣 be the set of instances of statements in 𝐿𝑖 that execute in

• the same iterations of the surrounding loops 𝐿1, . . . 𝐿𝑖−1 as Sink(p), but
• in an earlier iteration of 𝐿𝑖 .

12: if any instances in I𝑝𝑟𝑒𝑣 access loc then
13: return the last-executed such instance.

14:

15: for each statement S above 𝐿1 do ⊲ (start immediately above 𝐿1 and iterate upwards)

16: if any instance of S accesses loc then
17: return the last-executed such instance.

18: return null

4.3 Value-based Dependence Analysis
The dependence algorithm finds the most recently executed statement instance accessing the

same location as a given sink instance. When each cache line contains exactly one element, this

is equivalent to the reuse source. We describe our extension to situations where more than one

element per cache line in Section 4.8. Algorithm 2 is a high-level description of how the algorithm

works for a single instance Sink(p), which provides sufficient context to explain our optimizations.

The full dependence algorithm [Maslov 1994] handles all instances of the sink at once. We then

optimize this further for cache modeling (Section 4.4).

Let the list of enclosing loops of the sink be 𝐿1, . . . 𝐿𝑛 , in increasing order of depth. Our sink

instance occurs in iteration p1, . . . p𝑛 of these loops. First, we look for dependences of the sink

instance among other statements instances within the same iteration of the loops 𝐿1, . . . 𝐿𝑛 . For

example, if we were looking for dependences of 𝑆6(2) in Figure 2, we would at this stage only

consider statements occurring in 𝑖 = 2 of the outer loop. In this case, we immediately find a

dependence to 𝑆5(2).
If we don’t find the dependence in the same iteration of 𝐿𝑛 , then we look to previous iterations

(Lines 11-13). If no statement in 𝐿𝑛 accesses loc in iteration p, then we consider prior iterations of

𝐿𝑛 . It would be too slow to go through each iteration one at a time, so we handle all prior iterations

at once. In the example, say we want to compute the dependence of 𝑆5(3). It has no statements

above it, so we immediately look into all previous iterations i.e., iterations with 0 ≤ 𝑖 < 3. We find

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

Falcon: A Scalable Analytical Cache Model 222:9

that in iteration 𝑖 = 2, both 𝑆5(2) and 𝑆6(2) access the location that 𝑆5(3) accesses, so both are

candidates to be the dependence. Since 𝑆6(2) executes last, it is the true dependence here.

load arr[0] # Statement S3
load arr[1] # Statement S4
for i = 0 to 4
load arr[2] # Statement S5
load arr[i] # Statement S6

load arr[5] # Statement S7

Listing 2. Example input program for dependence anal-
ysis. To avoid confusion we do not reuse statement
labels used in earlier examples.

If we still don’t find a dependence, then we

look outside the immediately enclosing loop

𝐿𝑛 of the sink statement; we look for depen-

dences in the next loop 𝐿𝑛−1. If we don’t find
any there, then we continue further up, until

we have looked at all statements in the outer-

most enclosing loop 𝐿1. After this, if we still

have not found a dependence, then we look for

statements that appear above 𝐿1, statements

that do not share any common loops with the

sink statement. When looking for the depen-

dence of 𝑆6(4) in the example, we don’t find it

in any statement instance inside the loop, so

we look above at first statement 𝑆4. When we don’t find it there, we look at 𝑆3, and do not find

it there either. Note that we do not look below the loop at statement 𝑆7 since it executes after

𝑆6(4) (and in fact after any instance of statements in 𝐿1). When we don’t find a dependence to any

statements lying above 𝐿1 either, we return null indicating that no dependence exists.

The dependence algorithm we implement emulates the same process described above, but does so

simultaneously for all instances of the sink using the Presburger solver. Like Algorithm 2, it iterates

through all loops from 𝐿𝑛 to 𝐿1. At each loop 𝐿𝑖 , for instances that haven’t found a dependence

yet, it looks first for (a) dependences in the same iteration of 𝐿𝑖 as that instance, and then (b) in

prior iterations of 𝐿𝑖 . Finally, the implemented algorithm does not create a large and fragmented

set containing instances of many statements in the loop like I𝑎𝑏𝑜𝑣𝑒 and I𝑝𝑟𝑒𝑣 . Instead, it iterates
through each statement to be considered one at a time and looks for dependences in each separately,

and then chooses the last-executed instance among the dependences found to each statement.

With this overview of the algorithm as context, we now describe our optimizations. The first

optimization is in "inlining" Algorithm 1 into the dependence algorithm: at each step that some

dependences are found, we immediately then compute the number of cache misses among the

instances that found dependences. Since Presburger solvers have exponential worst-case runtime,

it is much more efficient to process many small dependence relations than one big one.

4.4 Distance-based Optimizations
We start with some intuition and then give details in the subsections that follow. In the dependence

algorithm, if even one sink instance is a compulsory miss, then we are forced to iterate through the

whole program searching for its dependence, and never finding it. This is also the case when we

have a single instance dependent on a very far away statement. In both these cases, the sink instance

is a cache miss: if we go far enough above the sink then no matter where the exact dependence

lies, we know that it is going to have a large or undefined reuse distance, corresponding to misses.

We early exit the dependence whenever we cross this reuse distance threshold. All leftover sink

instances can then be classed as misses.

4.4.1 Within-loop dependences. When we are looking at loop 𝐿𝑖 in the dependence algorithm, we

can compute the number of unique cache lines this loop accesses, parametric in the iteration of

the loops 𝐿1:𝑖 . If the piece-wise polynomial representing this count is piece-wise linear, we can use

the Presburger solver to compute the minimum and maximum number of cache lines accessed in

single iterations of this loop.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

222:10 Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser

If all single iterations access only a "small" number of cache lines, then all dependences be-

tween iterations that are executed "close" to each other correspond to cache hits. Formally, if all

iterations access at most max cache lines, then all dependences between iterations that are at

most ⌊max/cacheSize⌋ apart represent cache hits, so we can remove these from the obtained

dependences before the final threshold counting. Since the counting step can be expensive, it helps

to eliminate dependences before that.

We still have to make sure that dependences to statement instances in these loop iterations are

found; we can only skip the counting step. This is because the corresponding sink instances should

be marked as having found their dependence, so that those instances do not incorrectly get mapped

to some far away dependences and become wrongly classed as misses. The next two optimizations

allow us to skip part of the dependence analysis entirely.

4.4.2 Top-level Statements. When dealing with programs that apply a long series of small loop

kernels, the size of any given loop is typically much smaller than the entire program. This means

that most of the statements we process will lie outside and above the loop nest of the sink statement,

which are processed in lines 15-17 of Algorithm 2. For this scenario, we introduce a heuristic to

underapproximate the reuse distance of all remaining sink instances when we are in this phase of

the algorithm.

for i = 0 to 4
load A[i] # Statement S8

for i = 0 to 4
load C[i] # Statement S9

for i = 0 to 4
load B[i] # Statement S10

for i = 0 to 4
load B[i] # Statement S11

for i = 0 to 4
load A[i] # Statement S12

Listing 3. Example input program for reuse distance
underapproximation among top-level statements.

We start with an example (Figure 3). Assume

that cacheSize = 8. Let’s find the dependence

of 𝑆12(4). Clearly, it has no dependence in any

iteration of its own loop nest. We then consider

statement 𝑆11 and find no dependence there

either. Now consider 𝑆10. Before we even look

at what 𝑆10 accesses, we know that if we find

a dependence there, reuseInstances(𝑆12(4))
must necessarily contain all instances of 𝑆11. In

other words, the reuse lines definitely include

all cache lines accessed by 𝑆11. Thus, the reuse

distance, it exists, is lower bounded by the total

number of unique cache lines accessed by the

𝑆11, which is 4.

In general, as we move up the program, let

ℓ1, . . . ℓ𝑘 be the top-level loops lying between

the sink’s top-level loop and the current one. Then the reuse distance is lower bounded by the

number of unique cache lines accessed in all instances of these loops. Note that the cache lines

have to be unique. In the example, after processing and not finding any dependences in 𝑆10, the

lower bound on reuse distance remains 4. But after processing 𝑆9 and not finding a dependence

there, we can deduce that the reuse distance must be at least 8. Since we said that the cache size is

8, this means that the sink instance access was definitely a cache miss. Thus, we don’t even have to

iterate further up the program to find the actual dependence; we can immediately stop and classify

the instance as a miss.

In summary, the algorithm tracks the set of cache lines accessed by all statements in loop nests

lying between the sink loop nest and the current one. Whenever we complete searching instances

in a loop nest and are about to move on to the next one, we update the set of cache lines and

compute its cardinality. If the cardinality is at least the cache size, then we know that the reuse

distance is at least the cache size, so the sink instance is a cache miss. We therefore mark it as such

and return immediately.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

Falcon: A Scalable Analytical Cache Model 222:11

for i = 0 to 3
 for j = 0 to 3
 load A[i][j]

for i = 0 to 3
 for j = 0 to 3
 load B[j][i]
 load A[j][i]

for i = 0 to 3
 for j = 0 to 3
 load C[i][j]
 load B[i][j]

for i = 0 to 3
 for j = 0 to 3
 load D[i][j]
 load C[i][j]

for i = 0 to 3
 for j = 0 to 3
 load A[i][j]

for i = 0 to 3
 for j = 0 to 3
 load B[i][j]
 load A[i][j]

for i = 0 to 3
 for j = 0 to 3
 load C[i][j]
 load B[i][j]

for i = 0 to 3
 for j = 0 to 3
 load D[i][j]
 load C[i][j]

cache state
reconverges

recompute
cache stats

for these loops

Modified CodeOriginal Code

no recomputation
above this region

no recomputation
below this region

cache state stays same
until the modified loop

Fig. 3. Example illustrating the incremental recomputation optimization. The grids represent the arrays A, B,
and C. The darker squares represent the elements that are still present in the cache after the execution of
each code fragment. Cache states remain the same before the modification and are different for some time
after the modification. Soon though, the effects of the modification dissipate and the cache state reconverges
to that in the original program. In the example, this occurs immediately after the third loop nest is executed.

4.4.3 Incrementally Updating Predictions. Suppose we are trying to optimize our program by

making changes to some part of it. Whether it is a human or an autotuner, we typically only

change one local region before re-evaluating performance. Our distance-based heuristics allow us

to quickly and exactly recompute the whole program’s cache miss rate predictions after such a

change. The user’s editor or the autotuner must mark modified and new statements as "new". In

our MLIR implementation, this is denoted by an attribute. A statement can be deleted by modifying

it to a noop. Our algorithm will then update the predictions for each statement, by computing

the results for all modified statements as well as any statements whose cache behavior is affected

by these changes. However, it does not spend time recomputing results for the vast majority of

statements in the program that are deduced to definitely not be affected by the changes.

The first optimization is that if any statement is only ever executed before any modified code,

then its behavior is certainly not affected by the modification. So any statement that lies outside

any modified top-level loops and above them, inherits the old predictions.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

222:12 Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser

Next, we avoid excessive computations below modified code. This works similarly to the top-level

statement heuristic. That heuristic tells us that for each sink statement, there is a specific point in

the program above which there is no need to look for dependences as they do not affect the cache

miss rate. This means that the rest of the program above this point does not matter at all, since

our algorithm never even looks at it. If the sink statement we are analyzing is so far below the

last modified top-level loop that the distance heuristic would prevent us from looking at it, then a

change there has no impact on the sink, so the sink once again inherits the old miss counts. In other

words, this far below the modified region, the cache states reconverge to what they were before

the modification (Figure 3). We then inherit the old miss counts for all further statements until we

encounter another top-level loop containing a modified statement, after which the process repeats.

This optimization reduces the geomean time taken to update predictions by 133.7x (Section 5.4.2).

4.5 Threshold Counting: Counting Cache Misses
Capacity misses correspond to sink instances such that the reuse distance is at least the cache size,

i.e., #reuseLines(Sink(p)) ≥ cacheSize, where applying the relation reuseLines to a domain

point Sink(p) produces all lines that that point maps to. We want to count the number of such

instances, which is the cardinality #{Sink(p)) ∈ ISink | reuseDist(Sink(p)) ≥ cacheSize}.
For this, we first need to obtain reuseDist(Sink(p)) = #reuseDist(Sink(p)) as a function in

closed form. The parametric version of Barvinok’s algorithm [Barvinok 1994; Verdoolaege et al.

2007] produces a closed-form representation of this cardinality as a piece-wise quasi-polynomial, i.e.,

the domain is partitioned into pieces and for each piece the function is given as a quasi-polynomial.

Here a quasi-polynomial is a polynomial involving the variables p𝑖 and floor divisions of affine

expressions in the p𝑖 , where the denominator is constant.

Barvinok’s algorithm only works for Presburger sets. If the produced function is linear then

the set above is still a Presburger set and we can compute the outer cardinality using Barvinok’s

algorithm again [Gysi et al. 2019]. If the produced function is not linear, then the above is not a

Presburger set, so we perform some simplifications that split the domain of the function into a

number of pieces, such that the function restricted to each of these pieces can be expressed as a

linear expression.

4.5.1 Symbolic Pair-Wise Enumeration. For each pair of variables in the counting polynomial, say

𝑥 and 𝑦, we compute the minimum and maximum value that 𝑥 − 𝑦 can take. This can be done

efficiently in practice using linear programming. It is often the case that two variables are always,

say, within 8 of each other, due to constraints on the domain. In this case, we can enumerate the

possible values of 𝑥 in terms of 𝑦: for each possible integer value 𝑐 that 𝑥 −𝑦 can take, we substitute

𝑥 = 𝑦 + 𝑐 in the polynomial. For example, if, due to various domain constraints, it turns out that

0 ≤ 𝑥 −𝑦 ≤ 1, then the expression 𝑥2−𝑦2 can be rewritten as two pieces with simplified expressions

𝑦 − 𝑦 = 0 when 𝑥 − 𝑦 = 0 and (𝑦 + 1)2 − 𝑦2 = 2𝑦 + 1 when 𝑥 − 𝑦 = 1. These are much easier to

count than the original multivariate quadratic expression. In our implementation, we execute the

splitting if it would generate at most 16 pieces.

4.5.2 Enumerating Divisions. Sometimes divisions in the quasi-polynomials have large divisors

and take very few possible values. For example, a division like ⌊(𝑥 − 𝑦)/1024⌋ where the domain

constraints impose that 0 ≤ 𝑥,𝑦 ≤ 1500 can only take seven values, the integers in [−3, 2]. As such,
enumerating out all possible such values helps reduce the degree at the cost of a relatively minor

blowup in the number of pieces. In our implementation, we perform this splitting if at most ten

pieces would be generated for the division.

A naive implementation of this in the Presburger solver, isl, would run into problems. This

is because isl normalizes all division numerator coefficients to be non-negative by adding or

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

Falcon: A Scalable Analytical Cache Model 222:13

subtracting multiples of e.g. 𝑦 as needed. The above division would then be written as ⌊(𝑥 +
1023𝑦)/1024⌋ − 𝑦. The division in this expression takes on many possible values for the same

domain constraint; for 𝑦 from 0 to 1500, it produces at least 1024 different values here, even for a

fixed value of 𝑥 . Therefore, the form in which the division is presented matters. For this heuristic

to work well, we instead normalize all coefficients to (−𝑑/2, 𝑑/2], where 𝑑 is the denominator of

the division. As most of the expressions coming out of Barvinok’s algorithm seem to involve small

positive or negative coefficients, this modified normalization works well with our heuristic.

4.6 Representing Execution Order in Presburger Arithmetic
Let 𝑆 and𝑇 bememory access statements.Wewant to express in Presburger arithmetic the condition

that the instance 𝑆 (p) executes before the instance 𝑇 (q), denoted 𝑆 (p) ≺ 𝑇 (q). Recall that in our

Affine IR, if-conditions and loops are the only control flow. First, let’s consider the case that 𝑆 lies

lexically before 𝑇 . Then if 𝑆 and 𝑇 do not have any loops that surround both of them, all instances

of 𝑆 execute before all instances of 𝑇 .

Now let’s consider the case where there are 𝑘 ≥ 1 common loops surrounding 𝑆 and 𝑇 . Let’s call

these loops 𝐿1, . . . 𝐿𝑘 in order of increasing depth. If iteration (p1, . . . p𝑘) of these loops executes
before iteration (q1, . . . q𝑘), then we have 𝑆 (p) ≺ 𝑇 (q). This happens iff (p1, . . . p𝑘) strictly precedes
(p1, . . . p𝑘) in the lexicographic ordering, because in our Affine IR all loops are normalized to iterate

in increasing order of induction variable, possibly with some constant stride. The lexicographic com-

parison can be implemented directly in Presburger arithmetic since it supports ANDs, ORs, as well

as imposing equality and inequality conditions on variables. For example, (𝑥,𝑦) lexicographically
precedes (𝑎, 𝑏) ⇐⇒ 𝑥 < 𝑎 ∨ (𝑥 = 𝑎 ∧ 𝑦 < 𝑏).
If (p1, . . . p𝑘) comes after (q1, . . . q𝑘) in the lexicographic ordering, then 𝑆 (p) ≻ 𝑇 (q). On the

other hand, if the two vectors are equal, then the instance of the statement that comes earlier in

the lexical order executes first. Thus, we define ≺ as a Presburger relation over all instances.

4.7 Computing reuseInstances efficiently
We compute a relation

between : I × I → I
= {(𝑆 (p),𝑇 (q)) → 𝑈 (r) | 𝑆 (p) ≺ 𝑈 (r) ≺ 𝑇 (q)}.

This maps any two instances 𝑆 (p) ≺ 𝑇 (q) to all other instances that execute between them.

For brevity, we refer to depsSink as deps here. We compute (deps × I) ∩ between. This can be

understood as {
(Sink(p),𝑇 (q)) → 𝑈 (r)) | 𝑇 (q) = deps(Sink(p))∧

Sink(p) ≺ 𝑈 (r) ≺ 𝑇 (q)
}
.

Projecting out 𝑇 (q) from this, we obtain{
Sink(p) → 𝑈 (r)) | Sink(p) ≺ 𝑈 (r) ≺ deps(Sink(p))

}
,

which is the set of instances executed between each statement instance 𝑆 (p) and its reuse source.
In other words, this is reuseInstances. From the equation, we see that the only relevant parts of

the ≺ relation are the ones involving Sink and statements that are dependences of Sink. Hence,
we only write down these relevant constraints when inlining the definition of ≺ in the above

description. Earlier approaches converted the whole program into a single big formula and would

explicitly construct ≺ as a relation over all instances of all statements in the program, which blows

up the number of constraints. By exploiting the structure of the input program throughout the

algorithm we avoid this combinatorial explosion.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

222:14 Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser

4.8 Supporting Cache Lines
When there is exactly one element per cache line, the dependence algorithm (Section 4.3) directly

gives us the reuse source. When there are multiple elements in a cache line, we need to modify the

relations mapping statement instances to the location they access, so that they instead map to the

cache line they access. We can then run the same dependence algorithm on this modified access

map to obtain the reuse sources.

One approach is to linearize all the array accesses, flatten all the arrays to 1D, and floor-divide by

the cache line size. Thus, for a 2D array of dimension𝑀 × 𝑁 , 𝐴[𝑥] [𝑦] hits the cache line indexed
⌊(𝑜 + 𝑁𝑥 + 𝑦)/𝐵⌋, where 𝐵 is the number of array elements per cache line, which is a positive

integer for typical datatypes and cache line sizes, and 𝑜 is the offset of the beginning of the array 𝐴.

Unfortunately, this produces a much more complex access expression than the individual expres-

sions for each dimension in the array, which hampers analysis performance. One workaround [Gysi

et al. 2019] is to perform approximate modeling, by assuming 𝑜 and the last array dimension size

are multiples of 𝐵. In this case, all rows in the array start at the beginning of a cache line and we

don’t need to linearize. In the example, 𝑁 is padded to the next multiple of 𝐵 and the accessed

cache line is defined by the tuple (𝑥,𝑦/𝐵); 𝑜 becomes irrelevant when it is a multiple of 𝐵. However,

this approximation results in a significant accuracy loss in some cases where the last dimension is

small, which is common in some classes of neural networks.

We introduce the partial linearization feature, which incorporates aspects from both these

approaches. When this feature is enabled, we combine an array’s last 𝑘 dimensions into a single

one, linearizing the accesses to these dimensions into the single combined dimension. We then

model the program as if this combined last dimension were padded to cache line size. This avoids

issues caused by padding small dimensions. This makes involved expressions somewhat more

complex, incurring some slowdown, but our model is fast enough to begin with that we can still

obtain results in less than four minutes on average (Section 5.4). In our implementation, we choose

𝑘 for each array such that the combined dimension size is at least 10.

4.9 Generalizing to Multi-Level Hierarchies
Real-world caches typically have multiple levels. We support exactly modeling inclusive and

exclusive multi-level cache hierarchies with a write-through write-allocate policy. In this policy, all

writes load the cache line into the cache and update it there. They then also write the value to the

backing store. In this case, we compute the number of read misses in L1 by running the model as

normal, treating writes the same as reads. Since every write loads its cache line and "uses" it (in the

sense of LRU), everything works if we just include write accesses in the reuse instances relation.

The number of fetches from the backing store due to writes is also computed in the same way that

read misses are computed. The number of writes performed is the same for each level of the cache

– it is equal to the total number of writes, which is easily computed.

The last thing left to compute is the number of read misses at L2, which is done as follows. Let

L1 and L2 have 𝐶1 and 𝐶2 cache lines respectively. In inclusive caches, when a new cache line is

loaded, it is loaded into both L1 and L2 caches. When a cache line is evicted from L2, it is evicted

from L1 as well. However, in LRU caches a cache line that is being evicted from L2 would never

be present in L1. This is because under LRU the set of cache lines in L1 is equal to the 𝐶1 most

recently used cache lines in L2. The line being evicted from L2 is always the 𝐶2th most recently

used and thus is not part of L1. L2 is essentially independent of L1 here; running a single-level

𝐶2-sized cache automatically simulates the included L1 cache in its 𝐶1 most recently used lines.

The L2 miss count is thus the miss count of a single-level 𝐶2-sized cache. Ye et al. [2017] show that

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

Falcon: A Scalable Analytical Cache Model 222:15

trm
m

trisolv
floyd-warshall
gem

m
syrk
doitgen
m

vt
bicg
jacobi-1d
atax
syr2k
gesum

m
v

seidel-2d
cholesky
lu 2m

m
jacobi-2d
sym

m
3m

m
covariance
gem

ver
gram

schm
idt

fdtd-2d
durbin
heat-3d
correlation
ludcm

p
nussinov
adi
deriche
alexnet
vgg11
vgg13
vgg11_bn
vgg16
vgg13_bn
vgg19
vgg16_bn
squeezenet1_1
vgg19_bn
squeezenet1_0
resnet18
resnet34
m

nasnet0_5
m

nasnet0_75
m

nasnet1_0
m

nasnet1_3
wide_resnet50_2
resnet50
m

obilenet_v2
googlenet
m

obilenet_v3_sm
all

m
obilenet_v3_large

efficientnet_b0
inception_v3
wide_resnet101_2
resnet101
convnext_tiny
efficientnet_b1
efficientnet_b2
densenet121
efficientnet_b3
resnet152
efficientnet_b4
efficientnet_v2_s
densenet161
densenet169
efficientnet_b5
convnext_base
convnext_large
convnext_sm

all
efficientnet_b6
densenet201
efficientnet_v2_m
efficientnet_b7
efficientnet_v2_l

102

103

104

Lines of Code (log)

geomean is
119x bigger

Polybench
Torchvision

Fig. 4. We model the established but relatively small Polybench kernels (at most 175 lines) and, ranging from
566 to 23,595 lines, the considerably larger TorchVision benchmarks.

we can model exclusive cache hierarchies, by running once with size𝐶1 and once with size𝐶1 +𝐶2,

obtaining miss counts for L1 and L2 respectively.

We do not need to run the whole cache model for L1 and L2 separately. The reuse distance is

the same irrespective of the cache size; only the threshold counting depends on the cache size.

However, our distance-based optimizations (Section 4.4) depend on the cache size, so we need

to decide what size of cache they should use when computing reuse distance expressions to be

used in multiple threshold counts. When pruning sure misses, we use the size of the largest cache
in the hierarchy to ensure that we only consider sure misses that miss even in the biggest cache

considered. When pruning sure hits (Section 4.4.1), we use the size of the smallest cache in the

hierarchy, to ensure that we only consider sure hits that hit even in the smallest cache.

5 EVALUATION
We evaluate our tool on two benchmark sets: a collection of deep neural networks and a well-

established set of loop kernels. We evaluate our ability to scale by evaluating on 46 TorchVision

networks (inference mode). In addition, we evaluate on Polybench [Pouchet 2012], a set of 30 loop

kernels previously used in the cache modeling literature [Gysi et al. 2019; Morelli and Reineke

2022; Shah et al. 2022]. We compare our model’s performance against the state-of-the-art existing

models, Haystack [Gysi et al. 2019] and Warping [Morelli and Reineke 2022]. The TorchVision

networks are two orders of magnitude larger than the Polybench kernels on average (Figure 4), so

good performance on this benchmark indicates scalability.

On the TorchVision networks, our single-threaded performance is at least 40x faster than the

state-of-the-art models HayStack and Warping. While Haystack’s geomean runtime for it is over

half an hour, Falcon’s geomean runtime is just 1 minute and 8 seconds, and even on the slowest

benchmark Falcon takes less than 90 seconds. We are also at least twice as fast as Haystack and

Warping on Polybench. Running in parallel on 16 cores yields an additional 8.2x geomean speedup

on TorchVision. Updating the prediction after a local change to the program takes just 513ms on

average (geomean).

Our implementation returns the same results as Haystack on Polybench and on all programs

in the TorchVision benchmark where Haystack terminates within our 4-hour timeout. With our

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

222:16 Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser

partial linearization technique, our Pearson correlation of 𝑅 = 0.98 with hardware measurements

for TorchVision is close to a perfect correlation (𝑅 = 1).

5.1 Benchmarks
We evaluate Falcon on a benchmark consisting of neural networks from TorchVision, includ-

ing popular architectures such as AlexNet [Krizhevsky et al. 2012], ConvNext [Liu et al. 2022],

GoogLeNet [Szegedy et al. 2015], Inception v3 [Szegedy et al. 2016], MobileNet [Howard et al.

2017], ResNet [He et al. 2016], VGG [Simonyan and Zisserman 2015]. To run our model, we lower

the programs to the structured Affine IR (Section 2.1) using an existing third-party front-end,

Torch-MLIR
2
. Six of the architectures were not supported by Torch-MLIR and had to be excluded.

For each architecture, we take all versions that are available on TorchVision.

%zero = arith.constant 0.000000e+00 : f32
%A = memref.alloc() {alignment = 64 : i64} : memref<64x128xf32>
affine.for %i = 0 to 64 {

affine.for %j = 0 to 128 {
affine.store %zero, %A[%i, %j] : memref<64x128xf32>

}
}

(a) Original MLIR Affine IR.

volatile int A[64][128];
for (int i = 0; i <= 63; i += 1)

for (int j = 0; j <= 127; j += 1)
A[i][j] = 0;

(b) Converted C code.

Fig. 5. Example conversion from MLIR Affine IR to C for running baseline models.

To run the baseline cache models, we convert the programs to a C representation (Figure 5). The

C representation is obtained by creating a C program that accesses the same memory locations

as the MLIR Affine IR. Since prior models only operate on the memory access trace of the given

program, ignoring scalar accesses, running them on this C representation is equivalent to running

them on the program with compute operations.

In the TorchVision benchmark, all arrays always have datatype f32 (32-bit float), alignment to

64 bytes whenever that parameter is present, and contain an even number of elements. Due to the

even element counts, 64-byte alignment occurs by default. Due to the datatype always being f32,
we can always use 32-bit integer in the converted C code (only datatype width matters for cache

models). Finally, the volatile keyword does not have any effect on cache modeling but prevents

accesses being optimized out when compiling for hardware measurement of cache misses.

Prior works like Haystack and Warping primarily evaluated their work on Polybench [Pouchet

2012]. We also evaluate on this to show that we are still competitive on this benchmark which

has been traditionally used in this area of work. We run Haystack and Warping on Polybench’s C

benchmark. We then raise the C benchmark to MLIR Affine IR using Polygeist [Moses et al. 2021]

and run Falcon on the raised representation.

2
https://github.com/llvm/torch-mlir

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

https://github.com/llvm/torch-mlir

Falcon: A Scalable Analytical Cache Model 222:17

5.2 Methodology
Our development machine has an AMD Ryzen 9 5950X 16-core system with 64GB of RAM. Each

CPU core has a 32 KiB L1 data cache and 512 KiB L2 cache (inclusive of L1). Each 8-core complex

has a 32MiB L3 cache (exclusive of L1 and L2). All caches use a write-allocate write-back policy.

The L1 and L2 caches are 8-way while the L3 cache is 16-way set associative.

Our experiments model the L1 and L2 cache hierarchy of this system. We approximate its

undocumented replacement policy as LRU and model fully associative versions of these caches. We

are able to show that this is sufficient to achieve very good correlation with hardware measurements

when the partial linearization feature is enabled.

We run all models with a 4-hour time limit as the baselines that we compare against sometimes

run for a long time. Even within this time limit, Haystack sometimes exhausts the 64GB RAM of

the system and crashes. Because of this, all experiments were run on another machine, having an

Intel(R) Xeon(R) Gold 6226 CPU and 187GiB of memory.

convnext_tiny

convnext_large

convnext_base

convnext_small

alexnet
vgg11
vgg11_bn
vgg19_bn
vgg19
vgg16
vgg16_bn
vgg13
vgg13_bn
mobilenet_v3_small

mobilenet_v3_large

inception_v3
wide_resnet101_2

resnet34
mnasnet1_3
mnasnet0_5
densenet161
resnet18
efficientnet_b3

efficientnet_b0

wide_resnet50_2

efficientnet_b6

densenet201
efficientnet_b7

efficientnet_b1

efficientnet_b5

efficientnet_v2_m

mnasnet0_75
mnasnet1_0
efficientnet_b2

efficientnet_v2_l

efficientnet_b4

efficientnet_v2_s

mobilenet_v2
resnet152
resnet101
densenet169
resnet50
densenet121
squeezenet1_1

squeezenet1_0

googlenet

0

100

200

Re
l.

Er
ro

r (
%

)

with partial linearization without partial linearization

convnext_tiny

convnext_large

convnext_small

convnext_base

alexnet
mobilenet_v3_small

mnasnet0_5
vgg11
vgg11_bn
resnet18
squeezenet1_0

vgg19_bn
vgg19
vgg16_bn
vgg16
mobilenet_v3_large

vgg13_bn
vgg13
resnet34
mnasnet0_75
mnasnet1_3
efficientnet_b0

squeezenet1_1

efficientnet_v2_s

inception_v3
mobilenet_v2
mnasnet1_0
efficientnet_b3

efficientnet_b1

googlenet
efficientnet_v2_m

wide_resnet101_2

efficientnet_b2

wide_resnet50_2

efficientnet_v2_l

efficientnet_b6

efficientnet_b5

efficientnet_b4

resnet50
densenet161
densenet121
densenet169
resnet152
resnet101
densenet201
efficientnet_b7

0.00

0.05

0.10

0.15

0.20

Ab
s.

Er
ro

r

with partial linearization without partial linearization

Fig. 6. Enabling partial linearization reduces the mean relative error in predicting L1 miss rates from 124.53
to 8.53, and the mean absolute error from 0.11 to 0.01. (The absolute error can be at most 1 in the worst case.)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

222:18 Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser

5.3 Accuracy

0.000 0.165 0.330
0.000

0.165

0.330

pr
ed

ict
ed

 m
iss

 ra
te

R: 0.56 → 0.98

no partial linearization
with partial linearization
x= y line

measured miss rate

Fig. 7. Partial linearization makes our model much
more accurate: the Pearson correlation R for L1 miss
rate predictions goes from 0.56 to 0.98 (1 being perfect
correlation).

We find that our model without partial lin-

earization produces outputs that exactly match

Haystack on all 120 Polybench kernels and on

all the TorchVision models where it terminated

in time. This makes it especially interesting

to compare the accuracy of Falcon with and

without partial linearization. We check accu-

racy by comparing the predicted miss rates

with hardware measurements performed using

the perf_event_open syscall. This syscall gets
information from the hardware performance

monitoring unit (PMU). Partial linearization

brings down the mean absolute prediction er-

ror from 0.11 to 0.01 and the relative error from

124.53% to 8.53% (Figure 6). Finally, enabling

partial linearization takes the Pearson correla-

tion of our miss rate predictions from 0.56 to

0.98 (Figure 7), which is close to the optimal

value of 1.

The accuracy of these predictions indicates

that few conflict misses occur in this workload.

This matches the findings of prior work such as

Haystack [Gysi et al. 2019], which showed that

out of thirty different kernels in the Polybench

benchmark, only one (doitgen) showed a significant difference between the fully associative and

set-associative cache performance.

alexnet
vgg11
vgg11_bn
vgg13
vgg13_bn
vgg16
squeezenet1_1

vgg16_bn
squeezenet1_0

vgg19
vgg19_bn
resnet18
mnasnet0_75
mnasnet0_5
mnasnet1_0
resnet34
mnasnet1_3
mobilenet_v2
resnet50
wide_resnet50_2

googlenet
mobilenet_v3_small

mobilenet_v3_large

efficientnet_b0

efficientnet_b2

wide_resnet101_2

efficientnet_b1

efficientnet_b3

resnet101
efficientnet_b4

inception_v3
densenet121
efficientnet_b5

efficientnet_v2_s

resnet152
densenet161
efficientnet_b6

convnext_tiny

efficientnet_v2_m

densenet169
densenet201
efficientnet_b7

convnext_small

efficientnet_v2_l

convnext_base

convnext_large

5m

4h

Ru
nt

im
e

(lo
g)

Falcon Haystack

Fig. 9. Falcon takes seconds to minutes to model the programs in the TorchVision benchmark whereas
Haystack is slower or times out.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

Falcon: A Scalable Analytical Cache Model 222:19

5.4 Performance

1 4 8 12 16
cores used

0

2

4

6

8

10

12

14

16

sp
ee

du
p 8.2x

x= y line
speedup

Fig. 8. Running on 16 cores gives Falcon an 8.2x ge-
omean speedup on the TorchVision benchmark over
single-threaded runs.

We compare the performance of our model

against Haystack and Warping. We perform all

comparisons on equal terms by disabling partial

linearization, and separately report the perfor-

mance impact of partial linearization. For pro-

grams in the TorchVision benchmark, Falcon

runs in seconds to minutes whereas Haystack

often times out after running for four hours

(Figure 9). Warping always times out.

Finally, we compare with Polybench (XL),

where XL refers to larger array sizes, loop trip

counts, and number of memory accesses, but

not more program statements. We find Falcon

has a geomean runtime of 952ms, as compared

to 2.06 s for Haystack, and at least 4 minutes

for Warping. (Warping sometimes hits the four-

hour time limit, so the true average would be

higher.) Thus, we are not only much faster on

the large programs in the TorchVision bench-

mark but also competitive on the smaller bench-

marks that the previous cache models were

evaluated on.

Enabling the partial linearization method re-

sults in a 5.05x slowdown in our model’s runtime, bringing the geomean runtime to 3 minutes and

46 seconds, which is still significantly faster than the baselines, both of whose geomean runtimes

are greater than 32 minutes.

5.4.1 Parallelism. Our algorithm is embarrassingly parallel across sinks. Thus, we obtain notable

speedups with increasing parallelism (Figure 8). This would be useful in latency-sensitive situations,

such as a cache performance LSP that gives feedback to a performance programmer doing manual

performance tuning. Using 16 cores, we obtain an 8.2x speedup over our single-threaded runtime.

The maximum attainable speedup here mostly depends on the length of the longest-running thread,

i.e., the time taken to predict the performance of the single most difficult program statement.

5.4.2 Incrementally Updating Predictions. We evaluate the performance of our algorithm to in-

crementally update predictions after local changes (Section 4.4.3). The evaluation methodology

here must be chosen with some care. If the local modifications we perform add huge amounts of

code to the program, or even highly complex code that is difficult to model, then this will be the

overwhelming factor determining the runtime of the incremental compute. On the other hand, if

we evaluate by always simplifying a local section of code, then that would make incrementally

updating look especially performant.

A fair evaluation will check how much faster incrementally updating is than a full recomputation

of the analysis, all else being equal – in particular, with the size and complexity of the code not

changing significantly. To this end, we evaluate by marking a statement as being modified without

changing the content of the statement. We run the incremental update algorithm once for each

statement in the program, by marking that statement as modified.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

222:20 Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser

alexnet
vgg11
vgg11_bn
squeezenet1_1

vgg13
squeezenet1_0

vgg13_bn
mobilenet_v3_small

resnet18
vgg16
vgg16_bn
googlenet
vgg19
vgg19_bn
mnasnet0_5
mobilenet_v2
mnasnet0_75
mnasnet1_0
mobilenet_v3_large

mnasnet1_3
wide_resnet50_2

resnet34
resnet50
efficientnet_b0

wide_resnet101_2

resnet101
efficientnet_b1

efficientnet_b2

efficientnet_b3

inception_v3
densenet121
resnet152
densenet161
densenet169
efficientnet_b4

efficientnet_v2_s

densenet201
efficientnet_b5

convnext_tiny

efficientnet_v2_m

efficientnet_b6

efficientnet_b7

convnext_small

convnext_base

efficientnet_v2_l

convnext_large

1s

5m

Ru
nt

im
e

(lo
g)

geomean speedup = 133.7xincremental (mean) full recompute

Fig. 10. Incremental updates after local changes take Falcon less than a second instead of seconds to minutes
for the full analysis.

Taking an average over the statements in each program gives a good estimate of how local the

impact of the average statement in that program is, and how much our algorithm can exploit this

locality to cut down on recomputation time. We find that the mean incremental update takes less

than a second (Figure 10), as compared to tens of seconds to minutes for a full recomputation.

6 RELATEDWORK
Simulators. Cache simulators like Dinero [Edler and Hill 1999] and CASPER [Iyer 2003] can

precisely model the cache misses for a variety of real-world cache policies. However, they do so

by explicitly iterating through a trace of all the memory accesses in the program and so scale poorly.

Hybrid approach.Warping [Morelli and Reineke 2022] runs a simulation and tries to fast-forward

with polyhedral techniques whenever possible. Like a simulator, it can support a variety of cache

configurations. However, it turns out to be slow for the large TorchVision programs.

Analytical models.Analytical cache models try to provide a more scalable solution. There is a long

history of work on these [Bao et al. 2017; Beyls and D’Hollander 2005; Chatterjee et al. 2001; Gysi

et al. 2019]. Chatterjee et al. [2001] developed the first analytical cache model for arbitrary affine

programs by describing the set of cache misses by a Presburger formula. Rather than computing the

reuse sources for a statement instance S(p) accessing a cache line 𝐿 in an 𝐴-way associative cache

explicitly, they write down a formula with 𝐴 + 1 existentially quantified variables corresponding

to statement instances accessing unique cache lines that are not 𝐿, with the constraint that there

should be no access to 𝐿 between these and S(p). If this formula is satisfiable for a particular p, then
the reuse distance for S(p) exceeds the associativity and that instance incurs a miss. Thus, counting

the number of solutions to this formula gives the number of misses. This approach, however, does

not scale to larger associativities as it produces high-dimensional formulas that are hard to solve.

Beyls and D’Hollander [2005] explicitly calculate the most recent access to a location with a

formula similar to that of Chatterjee et al. [2001]: they consider every pair of statements and compute

the set of pairs of statement instances such that both references access the same location and there

do not exist any intervening accesses to the same location. They use this to compute the reuse lines

relation and compute the parametric cardinality to obtain the reuse distance polynomial. They noted

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

Falcon: A Scalable Analytical Cache Model 222:21

that the miss count is the number of p’s such that this polynomial exceeds the associativity, but

did not present an approach to actually compute this. Instead, they use the calculated polynomial

at runtime to insert cache prefetch instructions. We focus on statically and efficiently estimating

cache performance. They were also the ones that introduced the concepts of backward and forward
data reuses; the notion of reuse source that we use is the source of the backward reuse of a statement

instance (if it exists).

Bao et al. [2017] instead use parametric integer programming (PIP) [Feautrier 1988] to directly

compute the most recent access. Their approach runs within tens of seconds for most Polybench

kernels on the standard problem size. They also use an approach based on the reuse lines relation , but

solve the threshold counting problem differently. Instead of computing the parametric cardinality,

they once again exploit PIP. The goal is to find at least 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦 unique parametric points in the

intervening access relation. PIP can provide the domain of a relation as well as a parametric point,

mapping each domain element to a point in its image. Thus, by repeatedly finding a parametric

point and subtracting it from the relation 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦 − 1 times, they obtain a relation whose

domain only contains instances that map to at least 𝐴 accesses. Computing the cardinality of this

domain gives the number of misses. They also developed extensions to support multi-level caches,

and a similar repeated-PIP approach to compute the set of cache lines in the cache at the end of a

program fragment. These repeated-PIP methods are likely to blow up at larger associativities, as

PIP sometimes generates a large number of disjuncts and subtracting by many disjuncts typically

produces even more disjuncts, and their approach repeats this whole process 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦 times.

Haystack [Gysi et al. 2019] introduced a fully associative model that can handle larger problem

sizes by computing the number of cache misses from the polynomial-based formulation introduced

by Beyls and D’Hollander [2005]. Their contribution is to solve the threshold counting problem

efficiently in practice. When the polynomial is affine, they use another execution of Barvinok’s

algorithm to compute the number of misses. They also introduced two division simplification

techniques to try and reduce the degree of the polynomial. Finally, they introduced partial enu-

meration to handle the case when the polynomial cannot be made affine. Their approach was the

first of these models robust enough to compute all Polybench results on larger array sizes within a

minute. Their model assumes that the last dimension of all arrays is a multiple of the cache line

size; if the input does not satisfy this, it operates as though the last dimension had been padded to

satisfy this constraint. While this did not significantly hamper accuracy on Polybench, it does cause

issues in the TorchVision benchmark. In this case, the last dimension often refers to the number of

channels, which could be three for an RGB input image. Here, we significantly improve accuracy

by introducing partial linearization (Section 4.8).

BullsEye [Shah et al. 2022] further improved on Haystack by contributing novel probabilistic

and approximate methods to perform threshold counting. Our main contributions are orthogonal

and complementary to those of Haystack and BullsEye. These existing works as well as future

analytical models can be plugged into our framework, which will improve our performance at

threshold counting. In turn, our work can produce simpler reuse distance polynomials, which these

threshold counting methods would have an easier time counting.

Polyhedral cache modeling has thus far mostly focused on single-kernel benchmarks. Ours is

the first model that scales to modeling cache hierarchies on the actual full programs we would like

to optimize today. As we have seen, all previous approaches have operated on the whole program

represented as abstract Presburger formulas and did not exploit the program structure at all.

The threshold counting problem that Gysi et al. [2019] and Shah et al. [2022] focus on is not

currently the bottleneck when it comes to such large programs. Rather, it’s the reuse distance

computation. Our approach, for the first time, exploits the program AST structure, allowing us

to optimize the reuse distance computation. As a result, we introduce the first analytical cache

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

222:22 Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser

model that scales to large programs and can efficiently update results after local modifications to

the program.

Estimation by random sampling. Some works estimate cache performance by random sampling.

One disadvantage of such approaches is that compilers that use them to guide optimization do

not produce deterministic artifacts. Chen et al. [2018a] generate a random sample of instances of

each statement and compute the reuse time for each sampled instance, which is the number of

total accesses (not necessarily unique) performed between the instance and its reuse source; this is

then used to estimate cache miss rates. Their tool generates a program-specific binary for each

input program and samples a constant fraction of instances from each statement. Compilation may

be quick for the Polybench programs they evaluate on, but for larger programs this time can be

substantial, especially in an autotuning setting. Our incremental recomputation feature could be

combined with this to pick an appropriate fragment of the program that is sufficient to capture the

cache behavior of a given modified statement. They report a speedup of 20.97x over tracing. In

comparison, Haystack reports a speedup of 370x over the Dinero [Edler and Hill 1999] simulator,

while Falcon is in turn much faster than Haystack.

Xue and Vera [2004] explore approximate and randomized approaches. They start by defining

the reuse source using a Presburger formula. When trying to find the most recent prior statement

instance of a statement S1 that accesses the same cache line as a specific instance of a statement S2,

they use an approximation to avoid the usage of Parametric Integer Programming in cases where

the two statements have index expressions that, for each array dimension, only differ from each

other by a constant, but have the same coefficients for all induction variables. This approximation

is exact if the array is at most 2-dimensional or if the lowest dimension’s size is a multiple of

the cache line size. These assumptions do not hold in the TorchVision benchmark, where most

arrays have more than two dimensions and a small last dimension. In our work, we show that

partial linearization obtains a significant accuracy boost over predictions made under the cache line

padding assumption. Their sampling approach can be plugged in as a replacement for threshold

counting in our tool as well. Finally, our approach enables fast incremental recomputation which

they do not support.

Polyhedral dependence algorithms.Our algorithm primarily operates on the AST representation

of the program, unlike prior cache models. For this, we use a dependence algorithm based on the

implementation in isl, which is in turn based on the algorithm given byMaslov [1994]. This algorithm

is generic; one of our other contributions is the observation that this generic algorithm works well

for the cache modeling use case. On top of this, we use several domain-specific optimizations to

accelerate the model on large-scale programs and support efficiently updating the results after

program modifications.

7 CONCLUSION
We presented Falcon, the first analytical cache model that scales to large-scale programs like neural

networks. This is accomplished by taking advantage of the program AST’s control-flow structure

instead of operating on programs abstractly represented by Presburger formulas. Our model runs

in 44.9 seconds on average on our neural network benchmark as compared to over 32 minutes for

the prior state-of-the-art. Falcon updates predictions after local modifications in 513ms on average.

Thus, we provide a scalable, accurate, and efficiently updateable analytical cache model.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

Falcon: A Scalable Analytical Cache Model 222:23

DATA-AVAILABILITY STATEMENT
We have made available an artifact [Pitchanathan et al. 2024] that includes a Docker image with

the necessary toolchains, benchmarks, sources, and scripts to reproduce the main results from our

evaluation (Section 5).

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful feedback. This project has received funding

from the European Union’s Horizon EUROPE research and innovation program under grant

agreement no. 101070374 (CONVOLVE).

REFERENCES
Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson,

Kayvon Fatahalian, Frédo Durand, and Jonathan Ragan-Kelley. 2019. Learning to Optimize Halide with Tree Search and

Random Programs. ACM Trans. Graph. 38, 4, Article 121 (jul 2019), 12 pages. https://doi.org/10.1145/3306346.3322967
Wenlei Bao, Sriram Krishnamoorthy, Louis-Noel Pouchet, and P. Sadayappan. 2017. Analytical Modeling of Cache Behavior

for Affine Programs. Proc. ACM Program. Lang. 2, POPL, Article 32 (dec 2017), 26 pages. https://doi.org/10.1145/3158120
Alexander I. Barvinok. 1994. A Polynomial Time Algorithm for Counting Integral Points in Polyhedra When the Dimension

Is Fixed. Mathematics of Operations Research 19, 4 (1994), 769–779. http://www.jstor.org/stable/3690312

Kristof Beyls and Erik H. D’Hollander. 2005. Generating cache hints for improved program efficiency. Journal of Systems
Architecture 51, 4 (2005), 223–250. https://doi.org/10.1016/j.sysarc.2004.09.004

Siddhartha Chatterjee, Erin Parker, Philip J. Hanlon, and Alvin R. Lebeck. 2001. Exact Analysis of the Cache Behavior of

Nested Loops. SIGPLAN Not. 36, 5 (may 2001), 286–297. https://doi.org/10.1145/381694.378859

Dong Chen, Fangzhou Liu, Chen Ding, and Sreepathi Pai. 2018a. Locality analysis through static parallel sampling. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2018).
Association for Computing Machinery, New York, NY, USA, 557–570. https://doi.org/10.1145/3192366.3192402

Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind Kr-

ishnamurthy. 2018b. Learning to Optimize Tensor Programs. In Advances in Neural Information Processing Systems,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. Curran Associates, Inc.

https://dl.acm.org/doi/10.5555/3327144.3327258

Jan Edler and Mark D. Hill. 1999. Dinero IV Trace-Driven Uniprocessor Cache Simulator. (1999). https://pages.cs.wisc.edu/

~markhill/DineroIV/

Paul Feautrier. 1988. Parametric integer programming. RAIRO-Operations Research 22, 3 (1988), 243–268. https://doi.org/10.

1051/ro/1988220302431

Michael J. Fischer and Michael O. Rabin. 1998. Super-Exponential Complexity of Presburger Arithmetic. In Quantifier
Elimination and Cylindrical Algebraic Decomposition, Bob F. Caviness and Jeremy R. Johnson (Eds.). Springer Vienna,

Vienna, 122–135. https://link.springer.com/chapter/10.1007/978-3-7091-9459-1_5

GCC Contributors. [n. d.]. Auto-Vectorization in GCC. ([n. d.]). https://gcc.gnu.org/projects/tree-ssa/vectorization.html

Accessed: 2023-11-12.

Tobias Gysi, Tobias Grosser, Laurin Brandner, and Torsten Hoefler. 2019. A fast analytical model of fully associative caches.

In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019).
Association for Computing Machinery, New York, NY, USA, 816–829. https://doi.org/10.1145/3314221.3314606

Christoph Haase. 2018. A Survival Guide to Presburger Arithmetic. ACM SIGLOG News 5, 3 (July 2018), 67–82. https:

//doi.org/10.1145/3242953.3242964

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,

and Hartwig Adam. 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017). arXiv:1704.04861 http://arxiv.org/abs/1704.04861

Ravi Iyer. 2003. On modeling and analyzing cache hierarchies using CASPER. In 11th IEEE/ACM International Symposium
on Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003. 182–187. https:
//doi.org/10.1109/MASCOT.2003.1240655

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Improving the Accuracy, Scalability, and Performance

of Graph Neural Networks with Roc. In Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA,
March 2-4, 2020, Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze (Eds.). mlsys.org. https://proceedings.

mlsys.org/book/300.pdf

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/3158120
http://www.jstor.org/stable/3690312
https://doi.org/10.1016/j.sysarc.2004.09.004
https://doi.org/10.1145/381694.378859
https://doi.org/10.1145/3192366.3192402
https://dl.acm.org/doi/10.5555/3327144.3327258
https://pages.cs.wisc.edu/~markhill/DineroIV/
https://pages.cs.wisc.edu/~markhill/DineroIV/
https://doi.org/10.1051/ro/1988220302431
https://doi.org/10.1051/ro/1988220302431
https://link.springer.com/chapter/10.1007/978-3-7091-9459-1_5
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://doi.org/10.1145/3314221.3314606
https://doi.org/10.1145/3242953.3242964
https://doi.org/10.1145/3242953.3242964
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/MASCOT.2003.1240655
https://doi.org/10.1109/MASCOT.2003.1240655
https://proceedings.mlsys.org/book/300.pdf
https://proceedings.mlsys.org/book/300.pdf

222:24 Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser

Samuel J. Kaufman, Phitchaya Mangpo Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip Roy, Amit Sabne, and Mike

Burrows. 2021. A Learned Performance Model for Tensor Processing Units. In Proceedings of Machine Learning and
Systems 2021, MLSys 2021, virtual, April 5-9, 2021, Alex Smola, Alex Dimakis, and Ion Stoica (Eds.). mlsys.org. https:

//arxiv.org/abs/2008.01040

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural

Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS’12).
Curran Associates Inc., Red Hook, NY, USA, 1097–1105. https://dl.acm.org/doi/10.5555/2999134.2999257

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman,

Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: scaling compiler infrastructure for domain specific computation.

In Proceedings of the 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO ’21). IEEE Press,

2–14. https://doi.org/10.1109/CGO51591.2021.9370308

Z. Liu, H. Mao, C. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. 2022. A ConvNet for the 2020s. In 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA, 11966–11976.

https://doi.org/10.1109/CVPR52688.2022.01167

LLVM Contributors. [n. d.]. Auto-Vectorization in LLVM. ([n. d.]). https://llvm.org/docs/Vectorizers.html Accessed:

2023-11-12.

László Lovász and Herbert E. Scarf. 1992. The Generalized Basis Reduction Algorithm. Mathematics of Operations Research
17, 3 (1992), 751–764. http://www.jstor.org/stable/3689761

Sébastien Marcel and Yann Rodriguez. 2010. Torchvision the Machine-Vision Package of Torch. In Proceedings of the 18th
ACM International Conference on Multimedia (MM ’10). Association for Computing Machinery, New York, NY, USA,

1485–1488. https://doi.org/10.1145/1873951.1874254

Vadim Maslov. 1994. Lazy Array Data-Flow Dependence Analysis. In Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’94). Association for Computing Machinery, New York, NY,

USA, 311–325. https://doi.org/10.1145/174675.177911

Canberk Morelli and Jan Reineke. 2022. Warping Cache Simulation of Polyhedral Programs. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design and Implementation (PLDI 2022). Association for

Computing Machinery, New York, NY, USA, 316–331. https://doi.org/10.1145/3519939.3523714

William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko. 2021. Polygeist: Raising C to Polyhedral MLIR.

In Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques (PACT ’21).
Association for Computing Machinery, New York, NY, USA, 12.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger, Phillip B.

Gibbons, and Matei Zaharia. 2019. PipeDream: generalized pipeline parallelism for DNN training. In Proceedings of the
27th ACM Symposium on Operating Systems Principles (SOSP ’19). Association for Computing Machinery, New York, NY,

USA, 1–15. https://doi.org/10.1145/3341301.3359646

David A. Patterson and John L. Hennessy. 2013. Computer Organization and Design, Fifth Edition: The Hardware/Software
Interface (5th ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser. 2024. Artifact for "Falcon: A Scalable Analytical Cache Model".

(2024). https://doi.org/10.5281/zenodo.10972076

Arjun Pitchanathan, Christian Ulmann, Michel Weber, Torsten Hoefler, and Tobias Grosser. 2021. FPL: Fast Presburger

Arithmetic through Transprecision. Proc. ACM Program. Lang. 5, OOPSLA, Article 162 (oct 2021), 26 pages. https:

//doi.org/10.1145/3485539

Louis-Noël Pouchet. 2012. Polybench: The polyhedral benchmark suite. (2012). https://sourceforge.net/projects/polybench/

Nilesh Rajendra Shah, Ashitabh Misra, Antoine Miné, Rakesh Venkat, and Ramakrishna Upadrasta. 2022. BullsEye: Scalable

and Accurate Approximation Framework for Cache Miss Calculation. ACM Trans. Archit. Code Optim. 20, 1, Article 2
(nov 2022), 28 pages. https://doi.org/10.1145/3558003

Jun Shirako, Louis-Noël Pouchet, and Vivek Sarkar. 2014. Oil and Water Can Mix: An Integration of Polyhedral and

AST-Based Transformations. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’14). IEEE Press, 287–298. https://doi.org/10.1109/SC.2014.29

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. In

3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. http://arxiv.org/abs/1409.1556

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 1–9. https://doi.org/10.1109/CVPR.2015.7298594

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. Rethinking the Inception

Architecture for Computer Vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2818–2826.
https://doi.org/10.1109/CVPR.2016.308

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

https://arxiv.org/abs/2008.01040
https://arxiv.org/abs/2008.01040
https://dl.acm.org/doi/10.5555/2999134.2999257
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CVPR52688.2022.01167
https://llvm.org/docs/Vectorizers.html
http://www.jstor.org/stable/3689761
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1145/174675.177911
https://doi.org/10.1145/3519939.3523714
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.5281/zenodo.10972076
https://doi.org/10.1145/3485539
https://doi.org/10.1145/3485539
https://sourceforge.net/projects/polybench/
https://doi.org/10.1145/3558003
https://doi.org/10.1109/SC.2014.29
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.308

Falcon: A Scalable Analytical Cache Model 222:25

Sven Verdoolaege. 2007. barvinok library. (2007). https://barvinok.sourceforge.io/

Sven Verdoolaege. 2010. isl: An Integer Set Library for the Polyhedral Model. In ICMS, Vol. 6327. 299–302. https://doi.org/10.
1007/978-3-642-15582-6_49

Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice Bruynooghe. 2007. Counting Integer

Points in Parametric Polytopes Using Barvinok’s Rational Functions. Algorithmica, Article 48 (nov 2007), 37-66 pages.
https://doi.org/10.1007/s00453-006-1231-0

J. Xue and X. Vera. 2004. Efficient and accurate analytical modeling of whole-program data cache behavior. IEEE Trans.
Comput. 53, 5 (2004), 547–566. https://doi.org/10.1109/TC.2004.1275296

Chencheng Ye, Chen Ding, Hao Luo, Jacob Brock, Dong Chen, and Hai Jin. 2017. Cache Exclusivity and Sharing: Theory

and Optimization. ACM Trans. Archit. Code Optim. 14, 4, Article 34 (nov 2017), 26 pages. https://doi.org/10.1145/3134437

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 222. Publication date: June 2024.

https://barvinok.sourceforge.io/
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/s00453-006-1231-0
https://doi.org/10.1109/TC.2004.1275296
https://doi.org/10.1145/3134437

	Abstract
	1 Introduction
	2 Background
	2.1 Affine Programs
	2.2 Terminology
	2.3 Presburger Arithmetic

	3 Limitations and Hardware Model
	4 Algorithm
	4.1 Algorithm for Single-Level Cache
	4.2 Parallelism
	4.3 Value-based Dependence Analysis
	4.4 Distance-based Optimizations
	4.5 Threshold Counting: Counting Cache Misses
	4.6 Representing Execution Order in Presburger Arithmetic
	4.7 Computing reuseInstances efficiently
	4.8 Supporting Cache Lines
	4.9 Generalizing to Multi-Level Hierarchies

	5 Evaluation
	5.1 Benchmarks
	5.2 Methodology
	5.3 Accuracy
	5.4 Performance

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

