
1

OCC: An Automated End-to-End Machine Learning
Optimizing Compiler for Computing-In-Memory

Adam Siemieniuk, Lorenzo Chelini, Asif Ali Khan, Jeronimo Castrillon, Andi Drebes, Henk Corporaal, Tobias
Grosser, Martin Kong

Abstract—Memristive devices promise an alternative approach
toward non-Von Neumann architectures, where specific compu-
tational tasks are performed within the memory devices. In the
Machine Learning (ML) domain, crossbar arrays of resistive
devices have shown great promise for ML inference, as they allow
for hardware acceleration of matrix multiplications. But, to enable
widespread adoption of these novel architectures, it is critical to
have an automatic compilation flow as opposed to relying on a
manual mapping of specific kernels on the crossbar arrays. We
demonstrate the programmability of memristor-based accelerators
using the new compiler design principle of multi-level rewriting,
where a hierarchy of abstractions lower programs level-by-level
and perform code transformations at the most suitable abstraction.
In particular, we develop a prototype compiler, which progressively
lowers a mathematical notation for tensor operations arising in ML
workloads, to fixed-function memristor-based hardware blocks.

Index Terms—Memristor, MLIR, Computing-In-Memory, Ma-
chine Learning

I. INTRODUCTION

CMOS-based technology benefited from Dennard’s scaling
for several decades before hitting the energy wall [1]. This
trend led to a growing interest in domain-specific architectures,
especially in the ML domain, which has witnessed tremendous
development in recent years. Examples are tensor cores in
graphics processing units (GPUs) and specialized CMOS ac-
celerators such as Google’s TPU [2], Microsoft Brainwave [3],
and Intel’s Nervana Neural Network Processor [4]. But, the
ever-increasing complexity in applications and data processing
poses a quest for the next leap forward in energy efficiency, that
is anticipated in architectures which depart from the traditional
Von-Neumann model.

Computing-In-Memory (CIM) is a promising approach to
deliver the next leap in energy efficiency as computation and
storage are performed directly in memory without incurring
frequent long-distance, off-chip data movements [5]. Memristor
crossbars, in particular, have attracted significant interest due
to their ability to efficiently perform matrix-matrix and matrix-
vector multiplications — the dominant computational kernels
in deep neural networks [6]. Each memristive device stores a
multi-bit value as its conductance state, enabling high-storage
density. An application of a voltage at the crossbar input
results in an output current at the crossbar columns, which
is proportional to the conductance state of each memristive
devices following Kirchhoff’s law [7]. Organizing memristor
in a crossbar-like structure enables execution of parallel matrix-
vector multiplications in constant time complexity avoiding
data-transfers and bottlenecks of current multicores, GPUs, and
specialized accelerators.

Machine Learning Frontend

The Open CIM Compiler

CIM Runtime Library

Hardware
CPU

Fig. 1: The Open CIM compiler enables mapping tensor
operations described in a productive-oriented language to fixed-
function memristor-based hardware blocks exposed by the CIM
runtime library.

A key factor in the widespread adoption of these novel archi-
tectures will be the software ecosystem [7], [8]. In particular,
compilers should be able to efficiently map applications to the
crossbars without user intervention. While a significant body
of research proposes novel architectures, only a few of them
deal with programmability aspects. As a consequence, efficient
exploitation of CIM acceleration still relies on the programmer
and her understanding of the hardware, thus severely limiting
programmability [6], [9], [10]. This is opposed to the recent
trend to boost productivity by increasing the level of abstraction
in ML frameworks [11], [12], [13], [14]. In line with this,
our work improves programmability by introducing a fully
automatic, end-to-end compilation flow for CIM accelerators
in general and memristor-based architectures in particular. Our
compilation flow relies on the novel compiler paradigm of
multi-level intermediate representation (IR) rewriting, which
is a combination of 1) intermediate representation based on
the Static Single Assignment form (SSA). 2) Operations
with high-level semantic and 3) progressive lowering, which
allows gradual lowering of high-level abstraction to low-level
IR across the abstraction levels. The SSA form allows to
reuse existing optimizations developed for general-purpose
compilers. High-level operations enable encoding instructions
specific to our accelerator, while progressive lowering allows
to preserve domain-specific information and express high-level
transformations as peephole optimizations.

2

The Open CIM Compiler (OCC1) in Figure 1 together with
our ML frontend and CIM runtime library is, to the best of our
knowledge, the first end-to-end compilation flow for in-memory
computing that leverages multi-level IR rewriting for reliable
mapping of computational primitives to crossbar arrays. OCC
leverages the recently introduced MLIR compiler infrastructure
which allows compiler developers to match the right abstraction
levels for the problem at hand by adding custom abstraction
or dialects — namespace of custom types, operations, and
attributes [15].

We make the following contributions:
• The Open CIM Compiler (OCC), a fully automatic end-

to-end compilation framework based on multi-level IR
rewriting which allows reliable mapping of computational
motifs to the crossbar in a transparent way, without any
user intervention (Sec. IV).

• An OCC frontend for expressing tensor computations aris-
ing in the ML domain based on Tensor Comprehensions
(Sec. IV-A).

• A set of high-level hardware-agnostic passes to rewrite
computational motifs using the matrix-matrix product as
basic block primitive, thus enabling efficient execution on
the crossbar (Sec. IV-B1).

• A set of hardware-specific compiler passes to ensure the
computation fit the CIM crossbar and reduce the number of
write operations, hence increasing the crossbar’s lifetime
(Sec. IV-B2).

• A runtime library for transparent data allocation and data
transfer management to and from the CIM accelerator
(Sec. IV-B3).

• An experimental evaluation with a full system comprising
a CIM accelerator as a co-processor based on Gem5,
demonstrating that tensor operations frequently occurring
in ML kernels can be reliably identified and mapped on
the crossbar (Sec. V).

II. THE MLIR INFRASTRUCTURE

MLIR is a new compiler infrastructure under the LLVM
umbrella [15]. It aims at simplifying the compilation for
heterogeneous hardware and reducing the burden of developing
domain-specific compilers. For this, MLIR provides a non-
opinionated IR, i.e., little builtins leaving most of the IR
customizable. Having a customizable IR allows compiler
developers to match the right abstraction level for their problem
at hand by introducing custom types, operations, and attributes.
Operations are the essential atomic constituents of the IR; each
operation uses and produces new values. A value represents data
at runtime, and it is associated with a type known at compile-
time, whereas types model compile-time information about
values. Attributes, on the other hand, allow attaching compile-
time information to operations. Custom types, operations, and
attributes are logically grouped into dialects. A dialect is a basic
ingredient that enables the MLIR infrastructure to implement
a stack of reusable abstractions. Each abstraction encodes and
preserves transformation validity preconditions directly in its
IR, reducing the complexity and the cost of analysis passes.

1https://github.com/adam-smnk/Open-CIM-Compiler

 Linalg Stencil

SCF

MLIR LLVM IR

MLIR

F18
Affine

Standard

LLVM IR

DSLs

Fig. 2: Some of the available dialects in MLIR. The higher a
dialect, the higher is its level of abstraction.

Analog Logic

G 0,0 G 0,1 G 0,2

G 1,0 G 1,1 G 1,2

G 2,0 G 2,1 G 2,2

V

V

V

To output buffer

Step 1: Write to crossbarStep 2: Apply voltages corresponding to

Step 3: Measure output current

Fig. 3: Mapping a dot product on the CIM crossbar.

Figure 2 shows a subset of the available dialects in MLIR.
The Linalg dialect models linear-algebra operation on tensor
or buffer operands. The Stencil dialect represents iterative
kernels that update an array element according to a given
stencil pattern [16]. At a lower level, the Affine dialect models
a simplified polyhedral representation while F18 does it for
Fortran-specific constructs. SCF and Standard represent control
flow and a collection of miscellaneous operations, respectively.
MLIR LLVM IR models LLVM-IR constructs.

Progressive lowering (black arrows in Figure 2) enables
converting from higher-level domain-specific dialects to lower-
level platform-specific ones. We integrate OCC within the
MLIR infrastructure, carefully considering and exploiting the
existing abstraction and introducing new ones.

III. PCM MEMRISTOR BASIC

Multiple devices, such as Resistive Random Access Memory
(RRAM) or Phase Change Memory (PCM), can be used
as memristors, practically a passive device with two-port
components with a variable resistance state. We focus on
PCM devices in this work, as they are a strong candidate

3

for future non-CMOS and beyond von-Neumann computing
solutions [17]. PCM devices store information by changing the
cell resistance, switching between amorphous and crystalline
states. The transition between the two states happens due to
the application of external voltages that exceed the threshold
voltage of a device. The phase change material is sandwiched
between two electrodes, and its state can be changed by
applying a current burst through one of the electrodes. A short,
but intense, pulse — known as reset pulse — is used to bring
the material back to the amorphous phase (high-resistance).
Contrarily, to switch to low resistance, the set pulse — a lower
and longer pulse — is applied. An even lower pulse than the set
one is used to read the device’s state. Assembling memristive
devices into crossbar tiles allows for the in-place computation
of fixed-size tensor operations in constant time. For example,
the dot product of two fixed-size vectors v1 and v2 can be
accomplished by applying voltages corresponding to the values
of v1 to a column of memristive devices whose conductance
correspond to the values v2 and by measuring the resulting
current for the entire column (Figure 3). This can be extended
to fixed-size matrix-vector in constant time by adding one
column of memristive devices for each row of the input matrix
and measuring each column’s current.

IV. OCC LOWERING PIPELINE

In our compilation flow (Figure 4), the entry point is a collec-
tion of computational motifs defined in a productive-oriented
language for tensor operations, Tensor Comprehensions. We use
Teckyl [18] to enter the OCC lowering pipeline at the Linalg
abstraction. Our familiarity with Teckyl drives the choice of
using Tensor Comprehension; however, this does not preclude
OCC usage with other frontends. OCC makes use of the Linalg
and the CIM dialect; thus, as long as a frontend can raise/lower
to such dialects, OCC can apply his transformations. At the
Linalg level, OCC performs a set of hardware-agnostic passes
to rewrite computational motifs for a CIM-friendly execution.
All the passes serve to rewrite each motif (i.e., contraction)
using the matrix-matrix multiplication as a basic building block
to execute them efficiently on the crossbar. The Linalg dialect
is then lowered to CIM. The CIM dialect acts as an interface
to our accelerator. It performs hardware-specific optimizations
to ensure the computation fits in the crossbar array and to
reduce the number of write operations to increase the crossbar
lifetime. Besides, it orchestrates the data movement to and
from the device. During lowering from CIM to SCF and then
to Standard, the operations amenable for CIM execution are
mapped to function calls to our accelerator runtime library.
The remaining operations that are not being offloaded to CIM
follow the route toward the CPU code generation path.

A. Teckyl: Frontend for Tensor Operations

Teckyl is our entry point in the lowering pipeline [18].
It allows expressing tensor computations arising in ML us-
ing Tensor Comprehensions (TC) syntax [14]. Contrary to
conventional ML notation, Tensor Comprehensions is not
limited to predefined operators but allows users to specify
custom operations on tensors using index expressions. Its

Algorithm 1 Contraction detection

1: procedure ISCONTRACTION(op)
2: numInputs← op.getNumInputs()
3: numOutputs← op.getNumOutputs()
4:
5: if (numInputs 6= 2) ∨ (numOutputs 6= 1) then
6: return false
7: end if
8: if ¬HasMultiplyAddBody(op) then
9: return false

10: end if
11:
12: (A,B,C)← op.getOperands()
13: dimsA← {A.getDims()} . Set of dimensions
14: dimsB ← {B.getDims()}
15: dimsC ← {C.getDims()}
16:
17: reductionDims← dimsA ∩ dimsB
18: outDimsA← dimsA \ reductionDims
19: outDimsB ← dimsB \ reductionDims
20: outputDims← outDimsA ∪ outDimsB
21:
22: return

(|reductionDims| > 0) ∧
(dimsC = outputDims)

23: end procedure

syntax derives from the ubiquitous Einstein notation, where
universal quantifiers are introduced explicitly. The listing below
demonstrates how a matrix-vector multiplication is expressed
in TC syntax, where a matrix of M × K size is multiplied by
a K-size vector, resulting in a vector c.

def mv(float(M,K) A, float(K) x) -> (c) {
c(i) +=! A(i,k) * x(k)

}

The function signature provides the shape and type of the
inputs, while the index variables define the shape of the output
tensor. The index variable i iterates over the first dimension
of matrix A, thus its range is [0, M-1]. Since the variable i
indexes also the c vector, the size of c will be M. Similarly,
the range for the k variable can be derived. The “!” after the
addition assignment operator denotes a default initialization,
meaning that the c vector will be default initialized with zeros
of the appropriate type.

B. OCC Transformations

We distinguish between three types of transformations that
work in symbiosis across our entire lowering pipeline: hardware-
agnostic rewriting passes 1 in Figure 4, hardware-specific
passes to adapt the computational motif to the hardware features
2 , and the actual lowering to CIM library 3 .

1) Hardware-agnostic Rewriting Passes: All hardware-
agnostic passes work at the Linalg level and aim at rewriting
motifs using the matrix-matrix multiplication as building block.
OCC supports two rewriting passes: TTGT [19] for contractions
and Im2Col [20] for convolutions.

4

 Linalg
Y

X

v=(x,y)

Generic Opt.
DCE, CSE
INST-CMB

GEMM-centric
hardware-agnostic

passes

 CIM

 SCF

 Standard

The Open CIM Compiler (OCC)

Progressive lowering

hardware-specific
passes

1 2 3

.tc
.tc

.tc

ML Frontend -
Teckyl

Host-backend
Assembler

Linker

CIM Runtime
Library

CPU

Fig. 4: The different bulding blocks of the Open CIM Compiler.

Algorithm 2 Convolution detection (NC data format)

1: procedure ISCONVOLUTION(op)
2: numInputs← op.getNumInputs()
3: numOutputs← op.getNumOutputs()
4:
5: if (numInputs 6= 2) ∨ (numOutputs 6= 1) then
6: return false
7: end if
8: if ¬HasMultiplyAddBody(op) then
9: return false

10: end if
11:
12: (A,B,C)← op.getOperands()
13: indexesA← A.getIndexes()
14: indexesB ← B.getIndexes()
15: indexesC ← C.getIndexes()
16:
17: isN ← indexesC[0] = indexesA[0]
18: isK ← indexesC[1] = indexesB[0]
19: isC ← indexesA[1] = indexesB[1]
20: if ¬(isN ∧ isK ∧ isC) then
21: return false
22: end if
23:
24: for i ← 2 to indexesA.size() do
25: if indexesA[i] 6= (indexesB[i] + indexesC[i])

then
26: return false
27: end if
28: end for
29:
30: return true
31: end procedure

The TTGT pass automatically detects and applies the
TTGT transformation scheme on each detected contraction.
Algorithm 1 shows how contractions are detected at the Linalg
level. The operation must contain exactly three operands:
two inputs A and B and one output C. The operation body
must contain a multiply-accumulate computation, which is
verified by HasMultiplyAddBody callback by analyzing
the inner-most loop’s operations. Next, the dimensions of
the operands are evaluated. For the operation to represent

a contraction, the following criteria have to be fulfilled: 1)
The dimensions common to the both inputs A and B are the
reduction dimensions and shall not be present in the output C.
2) The input dimensions other than the reduction dimensions
shall be present in the output C. 3) The output C shall not
contain any dimensions that are not present in the inputs A
and B. If all the above conditions are met, the pass applies the
TTGT transformation.

TTGT stands for Transpose Transpose Gemm Transpose
and enables rewriting a contraction as a composition of
transpose, reshape, and GEMM operations. More specifically,
the main idea is first to flatten the tensors into matrices
via direct tensor transposition and reshape operations, then
execute a single GEMM operation, and finally, fold back
the resulting matrix into the original tensor layout. Only the
GEMM operation will be offloaded to the CIM accelerator,
while the rest of the operations will follow the CPU code
generation path. More concretely, consider how the TTGT
pass rewrites the contraction in Listing 1 (left) as a sequence
of Linalg operations. Two linalg.transpose operations
are emitted to re-arrange the dimensions for tensor A and B
(i.e., (k, l,m)→ (m, k, l) for A). The transposes’ outputs are
then fed to linalg.reshape operations that collapse the
second and third dimensions for A and the first and second
dimensions for B, reshaping the tensors to matrices. Finally,
a linalg.matmul is emitted. For our running example no
additional reshape and transpose operations are needed for the
output tensor C.

Complementary the Im2Col pass automatically detects
and applies the Im2Col transformation to every detected
convolution. Algorithm 2 shows how convolutions are detected.
Currently, only spatial convolutions using NC data format [21]
are supported. Specifically, for an operation to represent a
convolution, the access pattern for the input A must represent
a sliding window. For example, suppose A contains an image
of height H and width W and the input B is a kernel with
sizes KH and KW ; in that case, the mapping for the height
of the image shall take the form of h + kh where h and kh
are the iterators of the H and KH dimensions, respectively.

The Im2Col transformation is based on the idea that
convolution is no more than a dot-product between the kernel
filters and the moving window’s local regions. If we take each
window and stack them in a column-wise order and we do the
same for the filters, but in a row-wise order, we obtain two
matrices, and the output of multiplication between them will

5

def contr(int16(K,L,M) A, int16(L,K,N) B)
-> (int16(M,N) C)

{
C(m,n) += A(k,l,m) * B(l,k,n)

} w� lowers to
%0 = linalg.transpose(%A, {2, 0, 1})
%1 = linalg.transpose(%B, {1, 0, 2})
%2 = linalg.reshape(%0, {0, {1, 2}})
%3 = linalg.reshape(%1, {{0, 1}, 2})
// eligible for offloading to CIM
linalg.matmul(%2, %3, %C)

def conv2d(int16(B,IP,H,W) Img,
int16(OP,IP,KH,KW) Filt)

-> (int16(B,OP,H,W) Out)
{

Out(b,op,h,w) +=! Img(b,ip,h+ kh,w + kw)
* Filt(op,ip,kh,kw)

} w� lowers to
%0 = linalg.im2Col(%Img)
%1 = linalg.im2Col(%Filt)
// eligible for offloading to CIM
linalg.matmul(%0, %1, %OutTmp)
linalg.Col2Im(%OutTmp, %Out)

Listing 1: The Transpose Transpose GEMM Transpose (TTGT) rewriting rule on the left reduces each contraction to a sequence
of transpose, reshape, and GEMM operations. Complementary, the Im2Col rule (right) transforms each detected 2-dimensional
contraction in a GEMM operation. GEMM operations will be executed efficiently on the CIM crossbar.

// GEMM in the Linalg dialect
linalg.matmul(%A, %B, %C)w� lowers to
// tiled GEMM in the CIM dialect
%c0 = constant 0 : i32
%c1 = constant 1 : i32
%id = constant 0 : i32 // tile id
scf.for %i = %c0 to %tiledRows step %c1 {

scf.for %j = %c0 to %tiledCols step %c1 {
%tileC = cim.copyTile(%C, %i, %j)
%tempTile = cim.allocDuplicate(%tileC)
scf.for %k = %c0 to %numTiles step %c1 {

%tileA = cim.copyTile(%A, %i, %k)
%tileB = cim.copyTile(%B, %k, %j)
cim.write(%id, %tileB)
cim.matmul(%id, %tileA, %tempTile)
cim.barrier(%id)
// tileC += tempTile
cim.accumulate(%tileC, %tempTile)

}
cim.storeTile(%tileC, %C, %i, %j)

}
}

Listing 2: Lowering from a Linalg GEMM to a tiled version
that fits into a CIM accelerator crossbar. Bold operations are
executed on the CIM accelerator.

be equivalent to the original convolution’s output. Similarly to
the TTGT transformation, only the GEMM computation will
be offloaded to the CIM device, while the remaining operations
will follow the CPU code-generation path. Listing 1 (right)
shows how a 2D-convolution is rewritten at the Linalg level
by applying the Im2Col transformation.

2) Hardware-specific Passes: The CIM dialect focuses on
interfacing high-level Linalg GEMM operations with the under-
lying accelerator hardware. Table I shows a subset of operations
exposed by the CIM dialect. The optimizations performed at
this level focus primarily on data layouts and computation
re-order. The former maximizes hardware utilization, transfer
bandwidth, and enables the computation on the crossbar. The
latter aims to extend the crossbar lifetime.

The tiling pass, the output of which is shown in Listing 2,
allows performing matrix multiplication on data that exceeds a

// original tiled GEMM
scf.for %i = %c0 to %tiledRows step %c1 {
scf.for %j = %c0 to %tiledCols step %c1 {

%tileC = cim.copyTile(%C, %i, %j)
scf.for %k = %c0 to %numTiles step %c1 {

...
%tileB = cim.copyTile(%B, %k, %j)
cim.write(%id, %tileB)
...

}
cim.storeTile(%tileC, %C, %i, %j)

}
} w� transforms to
// loop interchanged GEMM
scf.for %k = %c0 to %numTiles step %c1 {
scf.for %j = %c0 to %tiledCols step %c1 {

%tileB = cim.copyTile(%B, %k, %j)
cim.write(%id, %tileB)
scf.for %i = %c0 to %tiledRows step %c1 {

%tileC = cim.copyTile(%C, %i, %j)
...
cim.storeTile(%tileC, %C, %i, %j)

}
}

}

Listing 3: Loop interchange to reduce the number of writes to
the CIM crossbar during a tiled GEMM computation.

CIM device’s capacity. The data is split into multiple smaller
GEMM computations. The input buffers are divided into tiled
rows (tiledRows) and columns (tiledCols) equal to
d M
tileSizee and d N

tileSizee where the tileSize depends on the
size of a crossbar tile. Along the inner dimension K, the number
of tiles (numTiles) is defined as d K

tileSizee. At the buffer
boundaries, the tile sizes are trimmed to stay within the matrix
dimensions. Because the host and the accelerator communicate
through DMA, the transferred data must be contiguous in the
memory. This is ensured by cim.copyTile operation that
copies elements from an input matrix that resides on a specific
tile to a temporary buffer. Then a partial result is computed and
placed into a temporary, tile-sized output buffer allocated using
cim.allocDuplicate. These buffers are then accumulated
on the host by performing element-wise addition, represented

6

Operation Datatype Target Description

cim.write(%id, %matB) integer, memref CIM Transfer and write the 2D buffer %matB to the crossbar of the CIM tile %id,
synchronously (or blocking).

cim.matmul(%id, %matA, %matC) integer, memref,
memref

CIM Transfer the 2D buffer %matA to the CIM tile %id, perform GEMM and store
the results in the 2D buffer %matC, asynchronously (or non-blocking).

cim.barrier(%id) integer HOST Wait for work completion on the CIM tile %id.
%tile = cim.copyTile(%mat, %row, %col) memref, mem-

ref, index, index
HOST Allocate a contiguous 2D buffer %tile and copy a tile at the position (%row,

%col) from the 2D buffer %mat.
cim.storeTile(%tile, %mat, %row, %col) memref, mem-

ref, index, index
HOST Copy the tile %tile to the 2D buffer %mat at the position (%row, %col).

cim.accumulate(%lhs, %rhs) memref, mem-
ref

HOST Add corresponding elements of the %rhs to the %lhs.

%output = cim.allocDuplicate(%input) memref, mem-
ref

HOST Allocate an empty buffer %output which has the same dimensions as the
input buffer %input.

TABLE I: The CIM dialect operations.

CIM Tile

CIM Tile

+

CIM Tile

CIM Accelerator

Matrix C

Matrix A (i, k)

1 2 3

Matrix B (k, j)

1

2

3

1

2

3

Fig. 5: Loop unrolling used to parallelize the GEMM compu-
tation across multiple CIM tiles.

by cim.accumulate. Finally, the tile is written back to the
provided output matrix C by a cim.storeTile operation.

Listing 3 shows the application of the op unrolling used
to parallelize the GEMM computation across multiple CIM
tiles. loop interchange pass, which reduces the number of
crossbars writes performed during a tiled GEMM computation.
In the original tiled GEMM computation the cim.copyTile
and the cim.write operations in the innermost k-loop
depend only on two out of the three iterators: k and j. By
interchanging the innermost loop k with the outermost one
i, the cim.copyTile and the cim.write operations can
be moved one level higher. Thus, reducing the number of
crossbars writes by a factor of tiledRows.

Figure 5 shows the loop unrolling pass which parallelizes
computation across multiple CIM tiles by unrolling the inner
dimension loop k of the tiled GEMM. The crossbars are
first populated with data and then all the computations are
performed in parallel. Once the first partial result is available,
it is accumulated before waiting for the next CIM tile which
helps improving overall latency.

3) Lowering to CIM Library Calls: Similarly to existing
works, our CIM accelerator exposes an Application Program
Interface (API). Thus the last step in our compilation flow is
to lower high-level CIM operations to function calls exposed
by the CIM run-time library. Each CIM-dialect operation (Ta-

ble I) that is accelerator specific (cim.write, cim.matmul,
cim.barrier) has a one-to-one mapping with a function call
exposed by the CIM runtime library. The rest of the operations
get lowered to the other existing MLIR dialects.

V. EVALUATION

In this section, we demonstrate the efficacy of OCC in
transparently detecting and offloading matrix-matrix and matrix-
vector multiplications. We first explain our experimental setup
and the set of benchmarks used, and then show the impact of
OCC offloading and transformations on both performance and
energy consumption.

A. Experimental Setup

Figure 6 shows the overview of our emulated SoC in Gem5.
We use the full-system simulation environment to simulate
a bare-metal machine. The SoC consists of a single high-
performance in-order (HPI) ARM core (a representative model
of the modern ARMv8-A implementation, see Table II) with on-
chip instruction and data caches (32 kB and 64 kB respectively)
and a unified L2-cache of size 2MB. The core operates at a
clock frequency of 2GHz, uses a main-memory of size 4GB
(single channel DRAM DDR3_1600_8×8) and is connected
to the CIM accelerator via the system bus. For the memory
system, we use the classic memory model in Gem5. The CIM
accelerator acts as a co-processor, is memory-mapped, and
accesses the shared main-memory using DMA operations.

The accelerator’s brain is the Control Unit responsible for
orchestrating and steering the internal circuitry. The execution
pipeline is represented by an array of CIM tiles. Within a
CIM-tile, the memristor crossbar executes the analog vector-
matrix multiplication. We model a 4-tile PCM crossbar with
a tile size of 64×64 and 8-bit precision. To accomplish 8-
bit precision, we rely on the bit-slicing technique, which
allows increasing accuracy by combining modules of smaller
bit width [7]. To be precise, we implement bit-slicing by
distributing the computation over multiple columns, where
each column represents a single bit slice. The bits are then
weighted at the column output using a shift and add block. The
physical properties of each PCM device, such as write and read
latency, are taken from the literature [9], [22], and reported
in Table II. Additional CMOS peripheral logic is required

7

C
IM

 A
cc

el
er

at
or

Host (ARM)
CPU

L1/L2

Main Memory

Column Buffers

PCM
Crossbar

Output Buffers

R
ow

 B
uf

fe
rs

Context
Register DMA

S&H S&H S&H

ADC

Shift & Add

G 0,0 G 0,1 G 0,2

G 1,0 G 1,1 G 1,2

G 2,0 G 2,1 G 2,2

C
on

tro
l U

ni
t V

V

V

I = v.G

v0

v1

v2

CIM Tile
CIM

Accelerator

(a) Overview of the architecture (b) Architecture of the CIM accelerator (c) Memristive crossbar array

Fig. 6: Overview of the emulated SoC.

TABLE II: SOC configuration.

CIM Parameter Value
Technology(64×64 @8-bit) IBM PCM 4×(64×64 @8-bit)
Compute and write latency/8-bit 1 µs and 2.5 µs
Compute/Read energy / 8-bit 200 fJ (2×100 fJ / 8-bit PCM)
Write energy / 8-bit 200pJ (2×100pJ / 8-bit PCM)
Cell endurance 3.2× 107

Mixed signal circuit energy 3.9nJ (@1.2GHz)
Input/Output buffer energy (1.5 kB) 5.4pJ/byte-access
Digital logic energy 40pJ / GEMV for weighted sum

and 2.11pJ / extra ALU operation
DMA and control unit energy <0.78nJ
Host CPU Spec Value
ARM-A53, 28nm 2GHz
L1-I, L1-D 32 kB, 64 kB
L2, Main-memory 2MB, 4GB (DDR3_1600_8×8)

to interface the PCM crossbar with the rest of the CIM-tile.
Sample-and-Holds and ADC converters serve such purpose.
Finally, row, columns input buffers, and output buffer in each
CIM-tile follow the purpose of storing temporary data that
will be read (output) or written (row and column buffer). ADC
converters introduce quantization loss which reduces inference
accuracy [23]. This aspect is not addressed in this paper.

A typical offloading scenario: In a typical offloading
scenario, the host prepares the data on shared memory and
triggers the accelerator execution by writing to special memory-
mapped registers. The CIM accelerator then reads the data in
the shared memory via DMA transactions (cim.write or
read). Once done, the accelerator writes back the results
in the shared memory. The host monitors the status of CIM
execution by polling the status register (cim.barrier, and
upon completion, it can safely resume execution.

We evaluate the following configurations:

• arm: Benchmarks compiled with the LLVM static compiler
after MLIR code generation (LLVM git commit fc2199d),
with no-parallelization enabled. The kernels are executed
on the host (ARM) processor with no-call to the CIM
accelerator. This provides a baseline for comparison.

• tile: Program generated by the OCC where the compute
kernel is tiled and offloaded to the accelerator. Tiling is

required to fit the kernel on the crossbar if the kernel’s
size exceeds the crossbar’s size.

• tile+interchange: Program generated by the OCC where
the compute kernel is tiled and the tiled loops are
interchanged to reduce write operations to the crossbar.
The cim-optimized code is offloaded to the accelerator.

• tile+parallel: Program generated by the OCC where the
compute kernel is tiled, parallelized and offloaded across
multiple tiles by unrolling the inner loop dimension.

• tile+interchange+parallel: All optimizations enabled.

The selection of the ARM core as a baseline is justified by the
fact that we focus on developing a new compiler infrastructure
for CIM. The evaluation thereof stress demonstrating the
effectiveness of OCC and not the CIM device itself. Comparison
of the CIM computational paradigm to state-of-the-art multi-
and many-cores machines as well as hardware accelerators has
already shown in previous works [7], [24], [9].

As for workloads, we use kernels from the ML domain
and kernels from previous studies on tensor contractions [25],
[14]. For the ML domain, we include applications ranging
from simple matrix multiplication kernels (e.g., mm) to a full
WaveNet cell [26]. While for the contractions, we included
tensors with different dimensionality used in coupled-cluster
methods [27] and chemistry calculations [28]. All the workloads
are expressed in 8-bit integers to match the precision of the
CIM crossbar.

Matrix Multiplication in the context of deep learning is
ubiquitous. We consider different flavours of matrix multiplica-
tions: mm a single matrix multiplication, 2mm two consecutive
independent matrix multiplications, and 3mm two matrix-matrix
multiplications and the multiplication of their results. We
consider also a transposed version with tmm.

Contraction generalizes matrix-multiplication to N-
dimensional tensors. We select three relevant contractions. For
example, abcd-aebf-dfce is widely used in chemistry
computation performing a reduction over the ef dimensions
and resulting in an output tensor abcd. Another use of
contractions is in Kronecker Recurrent Units which reduces

8

2
4

2
5

2
6

2
7

2
8

2
9

2
10

1
64

128

256

512

Matrix size

Sp
ee

du
p

host (ARM) CIM

2
4

2
5

2
6

2
7

2
8

2
9

2
10

1
64

128

256

512

Matrix size

Sp
ee

du
p

host (ARM) CIM

Fig. 7: Effect of matrix size on the CIM accelerator per-
formance. The results are normalized to the host processor
performance. The matrices always fit in the crossbar.

the size of neural network models. We consider an example
of a Kronecker product of three matrices with kronecker3.

Convolution is essential in modern neural network-based
visual processing. For the evaluation, we consider three repre-
sentative shapes: conv1d convolution between 1D data such
as two signal time series, conv2d convolution between two
2D inputs commonly used with images and feature extraction
kernels, and conv3d convolution between data such as video
and 3D kernels.

Fused Multi-Layer Perceptron or MLP3 is a component of
a production model which consists of 3 MLP layers that feed
into the binary classifier. Each MLP layer consists of matrix
multiplication followed by a point-wise operation.

Long Short-Term Memory (lstm) is widely used in
recurrent neural network that uses temporal dependencies in
data sequence (i.e., speech recognition) [29].

WaveNet is a full neural network model that generates raw
audio waveforms. The model consists of causal and dilated
convolutions, gated activation units, and residual and skip
connections. The latter two components are represented by
tensor contractions that can benefit from CIM acceleration.

Unsupported Kernels: Specific workloads are not offloaded
due to limitations in the current operation set and mapping
pipeline. Batch matrix multiplication and group convolution are
not processed as they contain extra dimensions (batch and group
dimension, respectively) which require additional, currently
unsupported, preprocessing steps to map them into CIM
primitives. In case of 2D moments computation, a potential
candidate for offloading is omitted as it consists of an input
matrix I being multiplied with itself I×I. This computation
does not fit the current contraction detection model which
assumes that all not reduced dimensions are unique. Finally,
some workloads, e.g., a gather operation, are ineligible for
CIM acceleration as they cannot be rewritten into equivalent
GEMM representation.

B. Effect of Kernel Size on CIM Performance

Figure 7 shows the effect of varying the data size for the
mm kernel. For smaller data sizes, programming the crossbar
dominates the benefits in the execution time, resulting in 32%
better performance for the baseline. But, as the data size

increases, the CIM accelerator outperforms the host (ARM)
processor by as much as 512×. The performance speedup
mainly comes from the parallel nature of the accelerator and
the slow down of the ARM processor due to limited data reuse
in the small caches as well as its relatively longer execution
time.

For the results in the following sections, we fix the size for
majority of kernels to 256 to show the impact of tiling and
loop interchange transformations. A few exceptions are made
to retain representative workload shapes. The convolutions
are performed on a single dataset with 3 input feature maps
using the default size of 256 in every dimension. The inputs
are convolved with 3 output feature maps using a dimension
size of 3. The waveNet uses batch size of 1, 32 residual
and dilation channels, and 64 skip channels. The lstm is
configured with 64 hidden states. Another exception is made
for the two largest contractions which dimensions are reduced
to fit them in the main memory. The abcd-aebf-dfce is
limited to a dimension size of 128 and the kronecker3 uses
size of 64×128 for its weights.

C. Effect on Performance

Figure 8 (top) shows the performance comparison of the
ARM core and the CIM accelerator for various workloads. We
gather Gem5 statistics only for our region of interest, which
consists of the offloaded kernel accounting for its execution
and the data transfer time to and from the device. The latter is
negligible and less than 3%. We neglect initialization statements
as they are always executed on the CPU side in all the
considered configurations.

Overall, the CIM accelerator improves performance in
the majority of benchmarks and configurations. The tile
configuration improves performance by 6.6×. Since a write
in PCM is 2.5× more expensive compared to a read/compute
operation (cf. Table II), the overall execution time in the tile
configuration is dominated by the write operation. Adding the
interchange pass on top of the tile pass reduces the number
of write operations to the crossbar by 7.4× and gives us extra
performance benefits. By parallelizing, we obtain the highest
gains 15.5× for the tile+parallel configuration and 17×
for the tile+parallel+interchange configuration.

The effective utilization of the crossbar also has a significant
impact on the benchmarks’ performance gain. Once mapped,
the GEMM-like kernels utilize the CIM accelerator 100%. On
the contrary, the kernel size in convolution benchmarks is much
smaller compared to the tile size and utilizes only around 2%
of the crossbar accelerator. In WaveNet, the utilization of the
CIM accelerator is around 6.5%. Similarly, a portion of the
computations still has to be performed on the host (Figure 9),
which further limits the maximal achievable speedup.

Kernels with the highest potential for reuse benefit the most
from the CIM accelerator (i.e., mm). Contrary kernels with low
data reuse (i.e., mv, lstm) achieve better performance only
in the parallelized configuration. This is reasonable as in the
non-parallelized configurations, the overhead introduced by the
expensive write operations is not amortized due to the low-data
reuse, which makes the ARM core faster than the CIM.

9

mm
2m

m
3m

m
tm

m
mlp3

co
nv

2d

kro
ne

ck
er3 lst

m mv

ab
-ac

d-d
bc

ab
c-a

cd
-db

ab
cd

-ae
bf-

dfc
e

wav
eN

et
107

109

1011

E
xe

cu
tio

n
C

yc
le

s
(l

og
sc

al
e)

arm tile tile+interchange tile+parallel tile+interchange+parallel

mm
2m

m
3m

m
tm

m
mlp3

co
nv

2d

kro
ne

ck
er3 lst

m mv

ab
-ac

d-d
bc

ab
c-a

cd
-db

ab
cd

-ae
bf-

dfc
e

wav
eN

et

0.01

0.1

1

10

E
ne

rg
y

C
on

su
m

pt
io

n
(j

ou
le

s
in

lo
g

sc
al

e)

arm tile tile+interchange tile+parallel tile+interchange+parallel

Fig. 8: Performance (top) and energy consumption results (bottom) of various configurations.

The convolution kernels get correctly detected and offloaded
by the OCC. However, as the obtained results are similar in
all three cases, only the most common ML kernel conv2d is
shown. The convolution uses a box moving window of size
3, thus the workload does not fully utilize the CIM crossbars
nor can it be parallelized. The execution time is dominated by
the Im2Col transformation overhead, which limits the potential
acceleration to the 34% of the kernel computations.

Similarly, the offloaded contractions in waveNet per-
form reduction over the dilation channels of size 32 which
underutilize the crossbar and prevent parallelization. The
overall speedup is also limited by the significant part of the
kernel which remains on the ARM CPU. For comparison, in
waveNet only 50% of the total computations can be offloaded,
while this fraction increases to 99.5% for mlp3. Looking
at the contractions the abcd-aebf-dfce achieves higher
speedup than ab-acd-dbc and abc-acd-db as the baseline
performance drops for abcd-aebf-dfce due to the high
control-flow overhead and high-stride accesses. Figure 10 shows
the percentage of execution cycles spent on the Host and on
the CIM accelerator.

mm
2m

m
3m

m
tm

m
mlp3

kro
ne

ck
er3

ab
cd

-ae
bf-

dfc
e

wav
eN

et

co
nv

2d lst
m mv

ab
-ac

d-d
bc

ab
c-a

cd
-db

10
30
50
70

100

%
O

ffl
oa

de
d

K
er

ne
l

Fig. 9: Percentage of kernel workload performed on the CIM
accelerator.

D. Effect on Energy Consumption

To measure the energy consumption, we feed McPact [30]
with the Gem5 statistics. The energy estimate of the CIM
module is not integrated into McPAT and is computed indepen-
dently and added to the total energy based on the parameters
provided in Table II.

The CIM accelerator reduces the energy consumption by
an average of 1.9× — 5.0× (Figure 8). While the memory
and compute operation in the accelerator are extremely cheap,

10

mm
2m

m
3m

m
tm

m
mlp3

kro
ne

ck
er3

ab
cd

-ae
bf-

dfc
e

wav
eN

et

co
nv

2d lst
m mv

ab
-ac

d-d
bc

ab
c-a

cd
-db

60

80

100

60

80

100

%
E

xe
cu

tio
n

C
yc

le
s

CIM Host

Fig. 10: Percentage of execution cycles spent on the Host CPU
and the CIM accelerator.

the control unit i.e., in/out/buffer registers, DAC/ADC and
other peripheral circuitry contribute a significant amount to the
total energy consumption of the accelerator. The reduction in
energy consumption of the CIM accelerator is mainly attributed
to the lower compute energy of the device and reduced data
movement, compared to the ARM processor.

Compared to the baseline ARM, the highest energy reduc-
tion of 4.5× and 5.0× is achieved for tile+parallel
and tile+parallel+interchange configurations re-
spectively. They are also 2.6× and 2.3× better compared to the
tile and tile+interchange configurations, respectively.
The reduction in energy consumption comes from the shorter
runtime attained by parallelizing the computations over multiple
tiles.

Similar to the performance results, the energy consumption in
some benchmarks also increases compared to the baseline arm
configuration. In the tile+interchange+parallel con-
figuration, waveNet, conv2d, lstm, and mv notice 60%,
30%, 10%, and 40% more energy consumption compared to
the baseline arm configuration respectively.

E. Effect on Endurance

One of the main challenges in PCM-based architecture is the
limited write endurance, currently projected between 107 and
109 [31], [32]. Once the endurance limit is reached the PCM
cell loses its ability to transition between state, potentially
giving data errors. Multiple works provide wear-leveling
techniques as hardware mechanisms [31]; OCC does that on
the software side. OCC tackles the problem by maximizing
the reuse of written tiles to the crossbar to reduce the overall
number of write operations. We compare our default tile
strategy with the tile+interchange where tile reuse is
maximized by interchanging the point loops. To estimate the
system lifetime, we adopt the formula below [31]:

SystemLifeT ime =
CellEndurance ∗ S

B
(1)

Where S is the crossbar’s size (4× (64× 64)), while B is
the write traffic in GB/s estimated with Gem5. We assume a
cell endurance of 3.2× 107, as in [31], and a uniform write

mm
2m

m
3m

m
tm

m
mlp3

co
nv

2d

kro
ne

ck
er3 lst

m mv

ab
-ac

d-d
bc

ab
c-a

cd
-db

ab
cd

-ae
bf-

dfc
e

wav
eN

et

ge
om

ea
n

1

4
6
8
10

Y
ea

rs

tile+parallel tile+interchange+parallel

Fig. 11: OCC increases the crossbar’s lifetime by minimizing
the number of write operations to the crossbar.

distribution on the crossbar. Figure 11 shows the expected
lifetime for the two mapping strategies. By expoiting data
reuse OCC increases the device’s lifetime by almost 2 years.

F. Comparison with previous CIM compilers

To show OCC’s ability to identify and extract matrix and
matrix-vector multiplications from multiple benchmarks and its
robustness, we compare it with the work of Vadivel et al. [33]
(TDO-CIM) and Drebes et al. [34] (TC-CIM). To the best of our
knowledge, these are the only works on CIM compilation that
aims at providing an end-to-end compilation for automatically
and transparently invoke CIM acceleration. All the other works
we are aware of require the users to rewrite the application to
explicit CIM acceleration, reducing application readiness. As a
metric for success, we count the number of identified matrix-
matrix or matrix-vector operations identified by inspecting the
generated code and comparing it with the maximum number
of callsites expected for perfect matching. A callsite is thus an
expected kernel identified and offloaded to the CIM accelerator.
Figure 12 shows the number of callsites for each benchmark.
conv refers to either a 1d, 2d or 3d convolution.

OCC behaves like the Oracle for the considered benchmarks,
enabling to map each kernel on the crossbar efficiently. TDO-
CIM, and TC-CIM, on the other hand, miss some opportunities.
Both frameworks are not able to identify and map contractions.
Additionally, in mlp3 and waveNet both frameworks miss
to identify one matrix-vector multiplication. The main culprit
is how both TDO-CIM and TC-CIM operate. Both frameworks
rely on Loop Tactics to identify computational motifs in low-
level code. Loop Tactics relies on canonicalization passes to
provide robust detection; however, sometimes, it may fail.
On the other hand, OCC relies on the progressive lowering
preserving semantic information till when they are needed.

VI. RELATED WORK

There is a considerable body of work that proposes new
architectures for in-memory computing, but few of them deal
with the programmability issue. Ambrosi et al. proposed
a software stack with an ONNX backend targeting ISA-
programmable memristor accelerators [35]. The compiler

11

mm
2m

m
3m

m
tm

m
mlp3

kro
ne

ck
er3

ab
cd

-ae
bf-

dfc
e

wav
eN

et
co

nv
lst

m mv

ab
-ac

d-d
bc

ab
c-a

cd
-db

0

2

4

C
al

ls
ite

s
TDO-CIM TC-CIM OCC Oracle

Fig. 12: Number of callsites for CIM library functions inserted
by OCC compared to previous works and a perfect mapping
(Oracle).

generates ISA code from a graph representation of a neural
network model constructed via the ONNX backend. In the
first phase of the compilation, the graph is partitioned and the
different operators are distributed to different virtual crossbars.
In the second phase, data communication operations between
producer and consumer are inserted by the compiler. Finally,
the virtual tiles are placed on the physical tiles, in such a way
that tiles that communicate frequently are placed closer together
to minimize latency. The authors present a limited evaluation
of the compiler. Building on their effort Ankit et. al. developed
a run-time compiler implemented as a C++ library, which
requires the users to rewrite the application with the proposed
API [24]. Contrary, our work enables transparent acceleration
as computational idioms amendable for CIM acceleration are
lowered to API calls directly without user intervention. A
similar approach is used in other works [36], [37], [38], [10]
where the in-memory accelerator exposes an API. During
compilation, the API is lowered to data-path configurations
and control-flow commands. Again, it is up to the programmer
to rewrite the application using the provided API, thus
reducing application readiness. Fujiki et al. proposed a compiler
framework that lowers Google’s TensorFlow DFG into simpler
instructions supported by the in-memory accelerator [39].
During compilation, complex instructions such as division,
exponents, and transcendental functions are broken down into a
set of LUTs, additions, and multiplications that can be executed
efficiently on the crossbar array. Besides, a set of scheduling
optimizations to expose instruction and block-level parallelism
are also implemented. Software pipelining is used to overlap
computation and storage in the CIM crossbar. Vadivel et al.
proposed TDO-CIM, an LLVM-based compiler to transparently
detect and offload computational motifs suitable for in-memory
execution starting from C or C++ code [33]. Their approach
relies on identifying computational patterns from the LLVM-IR,
which is low-level and close to machine instructions, thus in
some cases the detection fails. On the other hand, our approach
exploits the progressive lowering provided by multi-level IR,
making the discovery of motifs not only easier but also more
robust. In a follow-up paper, Drebes et al. proposed TC-CIM

a fully-automatic, end-to-end compilation flow from Tensor
Comprehensions to fixed-function memristor-based hardware
block [34]. Also, in this case, motifs recognition is based on
detection on the schedule tree — an internal representation
of a polyhedral compiler. Although the detection has been
proven to be robust to prior code transformations in some
cases, the detection still fails. Tiang et al. propose to co-design
accelerator with program synthesis frameworks to overcome
the programmability challenges. Their approach is orthogonal
to ours as they focus on exploiting the structured computation
resulting from synthesis to enhance programmability, while
OCC addresses the same issue from the software side [40].

VII. CONCLUSION

We presented the Open CIM Compiler, which is, to the
best of our knowledge, the first end-to-end compilation flow
for in-memory computing that takes advantage of multi-level
IR rewriting for reliable mapping and transparent offloading
for CIM computation. We illustrate how progressive lowering
enables easy mapping of machine learning applications to
the CIM crossbar, and how a small yet self-contained set of
rewriting passes enable a CIM-friendly execution.

We evaluate our compilation flow using simulations based
on statistically accurate PCM models capturing the behaviour
of devices fabricated in 90-nm CMOS technology and show
the soundness of our approach.

In the future, we would like to extend OCC to (1) detect and
offload a broader set of operations (both logical and arithmetic)
that can be accelerated using the in-memory programming
model, (2) to provide, over time, a catalog of portable
optimizations to benefit multiple in-memory technologies.

ACKNOWLEDGMENTS

This work was partially funded by the European Commission
Horizon2020 programme through the NeMeCo grant agreement,
id.676240, and the MNEMOSENE grant agreement, id 780215,
the German Research Council (DFG) through the Co4RTM
grant agreement, id 450944241 and the Cluster of Excellence
“Center for Advancing Electronics Dresden” (cfaed).

REFERENCES

[1] S. Borkar, “Exascale computing - a fact or a fiction?,” in 2013 IEEE
27th International Symposium on Parallel and Distributed Processing,
pp. 3–3, May 2013.

[2] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
pp. 1–12, 2017.

[3] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, et al., “Serving
dnns in real time at datacenter scale with project brainwave,” IEEE Micro,
vol. 38, no. 2, pp. 8–20, 2018.

[4] A. Yang, “Deep learning training at scale spring crest deep learning
accelerator (intel® nervana™ nnp-t),” in 2019 IEEE Hot Chips 31
Symposium (HCS), pp. 1–20, IEEE Computer Society, 2019.

[5] A. Sebastian, M. L. Gallo, and E. Eleftheriou, “Computational phase-
change memory: beyond von neumann computing,” Journal of Physics
D: Applied Physics, vol. 52, p. 443002, aug 2019.

[6] V. Joshi, M. L. Gallo, I. Boybat, S. Haefeli, C. Piveteau, M. Dazzi,
B. Rajendran, A. Sebastian, and E. Eleftheriou, “Accurate deep neural
network inference using computational phase-change memory,” 2019.

12

[7] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnology, pp. 1–16, 2020.

[8] J. Castrillon, M. Lieber, S. Klüppelholz, M. Völp, N. Asmussen,
U. Assmann, F. Baader, C. Baier, G. Fettweis, J. Fröhlich, A. Goens,
S. Haas, D. Habich, H. Härtig, M. Hasler, I. Huismann, T. Karnagel,
S. Karol, A. Kumar, W. Lehner, L. Leuschner, S. Ling, S. Märcker,
C. Menard, J. Mey, W. Nagel, B. Nöthen, R. Peñaloza, M. Raitza, J. Stiller,
A. Ungethüm, A. Voigt, and S. Wunderlich, “A hardware/software
stack for heterogeneous systems,” IEEE Transactions on Multi-Scale
Computing Systems, vol. 4, pp. 243–259, July 2018.

[9] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
in 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), pp. 14–26, June 2016.

[10] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A processing-
in-memory architecture for bulk bitwise operations in emerging non-
volatile memories,” in 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1–6, June 2016.

[11] L. Truong, R. Barik, E. Totoni, H. Liu, C. Markley, A. Fox, and
T. Shpeisman, “Latte: A language, compiler, and runtime for elegant
and efficient deep neural networks,” in Proc. of the 37th ACM SIGPLAN
Conf. on Programming Language Design and Implementation, PLDI’16,
(New York, NY), pp. 209–223, ACM, 2016.

[12] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM:
An automated end-to-end optimizing compiler for deep learning,” in
13th USENIX Symp. on Operating Systems Design and Implementation
(OSDI 18), (Carlsbad, CA), pp. 578–594, USENIX Association, 2018.

[13] “PlaidML.” https://www.intel.ai/plaidml, 2018.
[14] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. Devito, W. S.

Moses, S. Verdoolaege, A. Adams, and A. Cohen, “The next 700 accel-
erated layers: From mathematical expressions of network computation
graphs to accelerated gpu kernels, automatically,” ACM Trans. Archit.
Code Optim., vol. 16, pp. 38:1–38:26, Oct. 2019.

[15] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: Scaling
Compiler Infrastructure for Domain Specific Computation,” CGO’21,
p. to appear.

[16] T. Gysi, C. Müller, O. Zinenko, S. Herhut, E. Davis, T. Wicky, O. Fuhrer,
T. Hoefler, and T. Grosser, “Domain-specific multi-level ir rewriting for
gpu,” arXiv preprint arXiv:2005.13014, 2020.

[17] A. Mehonic, A. Sebastian, B. Rajendran, O. Simeone, E. Vasilaki, and
A. J. Kenyon, “Memristors–from in-memory computing, deep learning
acceleration, spiking neural networks, to the future of neuromorphic and
bio-inspired computing,” arXiv preprint arXiv:2004.14942, 2020.

[18] A. Drebes, “Teckyl: An mlir frontend for tensor operations,” 2 2020.
[19] P. Springer and P. Bientinesi, “Design of a high-performance gemm-

like tensor–tensor multiplication,” ACM Transactions on Mathematical
Software (TOMS), vol. 44, no. 3, pp. 1–29, 2018.

[20] A. Vasudevan, A. Anderson, and D. Gregg, “Parallel multi channel
convolution using general matrix multiplication,” in 2017 IEEE 28th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), pp. 19–24, IEEE, 2017.

[21] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cuDNN: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[22] M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers, and E. Eleftheriou,
“Compressed sensing with approximate message passing using in-memory
computing,” IEEE Transactions on Electron Devices, vol. 65, pp. 4304–
4312, Oct 2018.

[23] H. Jiang, W. Li, S. Huang, S. Cosemans, F. Catthoor, and S. Yu,
“Analog-to-digital converter design exploration for compute-in-memory
accelerators,” IEEE Design Test, pp. 1–1, 2021.

[24] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S.
Williams, P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy, and
D. S. Milojicic, “Puma: A programmable ultra-efficient memristor-
based accelerator for machine learning inference,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’19, (New
York, NY, USA), pp. 715–731, ACM, 2019.

[25] P. Springer and P. Bientinesi, “Design of a high-performance gemm-like
tensor–tensor multiplication,” ACM Trans. Math. Softw., vol. 44, Jan.
2018.

[26] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[27] K. Stock, T. Henretty, I. Murugandi, P. Sadayappan, and R. Harrison,
“Model-driven simd code generation for a multi-resolution tensor kernel,”
in 2011 IEEE International Parallel Distributed Processing Symposium,
pp. 1058–1067, 2011.

[28] G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, V. Choppella,
D. Cociorva, Xiaoyang Gao, R. J. Harrison, S. Hirata, S. Krishnamoorthy,
S. Krishnan, Chi-chung Lam, Qingda Lu, M. Nooijen, R. M. Pitzer,
J. Ramanujam, P. Sadayappan, and A. Sibiryakov, “Synthesis of high-
performance parallel programs for a class of ab initio quantum chemistry
models,” Proceedings of the IEEE, vol. 93, no. 2, pp. 276–292, 2005.

[29] M. Zhang, S. Rajbhandari, W. Wang, and Y. He, “Deepcpu: Serving
rnn-based deep learning models 10x faster,” 07 2018.

[30] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO 42:
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 469–480, 2009.

[31] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling,” in Proceedings of the 42Nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 42,
(New York, NY, USA), pp. 14–23, ACM, 2009.

[32] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakr-
ishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla,
et al., “Phase change memory technology,” Journal of Vacuum Science
& Technology B, Nanotechnology and Microelectronics: Materials,
Processing, Measurement, and Phenomena, vol. 28, no. 2, pp. 223–262,
2010.

[33] K. Vadivel, L. Chelini, A. BanaGozar, G. Singh, S. Corda, R. Jordans,
and H. Corporaal, “Tdo-cim: transparent detection and offloading for
computation in-memory,” in 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1602–1605, IEEE, 2020.

[34] A. Drebes, L. Chelini, O. Zinenko, A. Cohen, H. Corporaal, T. Grosser,
K. Vadivel, and N. Vasilache, “TC-CIM: Empowering Tensor Compre-
hensions for Computing-In-Memory.” IMPACT 2020 - 10th International
Workshop on Polyhedral Compilation Techniques, Jan. 2020.

[35] J. Ambrosi, A. Ankit, R. Antunes, S. R. Chalamalasetti, S. Chatterjee,
I. E. Hajj, G. Fachini, P. Faraboschi, M. Foltin, S. Huang, W. Hwu,
G. Knuppe, S. V. Lakshminarasimha, D. Milojicic, M. Parthasarathy,
F. Ribeiro, L. Rosa, K. Roy, P. Silveira, and J. P. Strachan, “Hardware-
software co-design for an analog-digital accelerator for machine learning,”
in 2018 IEEE International Conference on Rebooting Computing (ICRC),
pp. 1–13, Nov 2018.

[36] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA),
pp. 27–39, June 2016.

[37] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-based
accelerator for deep learning,” in 2017 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 541–552, Feb
2017.

[38] M. N. Bojnordi and E. Ipek, “Memristive boltzmann machine: A
hardware accelerator for combinatorial optimization and deep learning,”
in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 1–13, March 2016.

[39] D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’18, (New York, NY, USA), pp. 1–14, ACM, 2018.

[40] Y. Tang, H. Jia, and N. Verma, “Reducing energy of approximate feature
extraction in heterogeneous architectures for sensor inference via energy-
aware genetic programming,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 67, no. 5, pp. 1576–1587, 2020.

