
55

Declarative Loop Tactics for Domain-specific Optimization

LORENZO CHELINI, Eindhoven University of Technology and IBM Research Zurich

OLEKSANDR ZINENKO, Inria

TOBIAS GROSSER, ETH Zurich

HENK CORPORAAL, Eindhoven University of Technology

Increasingly complex hardware makes the design of effective compilers difficult. To reduce this problem,

we introduce Declarative Loop Tactics, which is a novel framework of composable program transformations

based on an internal tree-like program representation of a polyhedral compiler. The framework is based on

a declarative C++ API built around easy-to-program matchers and builders, which provide the foundation to

develop loop optimization strategies. Using our matchers and builders, we express computational patterns

and core building blocks, such as loop tiling, fusion, and data-layout transformations, and compose them into

algorithm-specific optimizations. Declarative Loop Tactics (Loop Tactics for short) can be applied to many

domains. For two of them, stencils and linear algebra, we show how developers can express sophisticated

domain-specific optimizations as a set of composable transformations or calls to optimized libraries. By al-

lowing developers to add highly customized optimizations for a given computational pattern, we expect our

approach to reduce the need for DSLs and to extend the range of optimizations that can be performed by a

current general-purpose compiler.

CCS Concepts: • Software and its engineering → Compilers;

Additional Key Words and Phrases: Loop tactics, polyhedral model, declarative loop optimizations

ACM Reference format:

Lorenzo Chelini, Oleksandr Zinenko, Tobias Grosser, and Henk Corporaal. 2019. Declarative Loop Tactics for

Domain-specific Optimization. ACM Trans. Archit. Code Optim. 16, 4, Article 55 (December 2019), 25 pages.

https://doi.org/10.1145/3372266

1 INTRODUCTION

As hardware increases in complexity, it becomes difficult for general-purpose compilers to pro-
duce efficient code automatically, as they operate at a very low level driven by one-size-fits-all
optimization strategies [27]. As a consequence, when a substantial level of performance is re-
quired, we often rely on hand-written optimizations performed by expert programmers using low-
level and architecture-specific constructs. Unfortunately, code optimized for performance obscures
the high-level algorithm and is tied to a specific architecture, thus impeding code portability and

This work was partially supported by the European Commission Horizon 2020 program through the MNEMOSENE grant

agreement, ID 780215, and the NeMeCo grant agreement, ID 676240, as well as through Polly Labs (Xilinx Inc, Facebook

Inc, and ARM Holdings) and the Swiss National Science Foundation through the Ambizione program.

Authors’ addresses: L. Chelini, Eindhoven University of Technology and IBM Research Zurich; email: l.chelini@tue.nl;

O. Zinenko, Inria; email: oleksandr.zinenko@inria.fr; T. Grosser, ETH Zurich; email: tobias.grosser@inf.ethz.ch; H. Corpo-

raal, Eindhoven University of Technology; email: h.corporaal@tue.nl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2019/12-ART55

https://doi.org/10.1145/3372266

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.

https://doi.org/10.1145/3372266
mailto:permissions@acm.org
https://doi.org/10.1145/3372266


55:2 L. Chelini et al.

Fig. 1. Declarative Loop Tactics (dark gray box), or simply Loop Tactics, enable easy implementation of

advanced domain-specific optimizations used in DSL compilers, and transparent BLAS invocation into a

general-purpose compiler by means of a declarative C++ API.

readability. GEMM kernels, for example, require specific data-layout and loop-tiling techniques to
improve temporal and spatial locality [31]. However, stencil kernels benefit from a specific data-
layout transformation for efficient vectorization on short-SIMD architectures and the application
of loop tiling techniques to improve temporal locality [22].

Combining all these techniques is difficult for experienced programmers and definitely beyond
the scope of general-purpose compilers, the main reason for which is the lack of a framework
to identify and represent computational patterns. This problem is typically addressed by using
hand-optimized libraries or developing domain-specific languages (DSLs). Although DSLs have
been proven to be effective, they are not immediately applicable to general-purpose code, and
their development requires effort and expertise in multiple domains [44]. Worse, DSLs are usually
stand-alone solutions with little reusability of transformations and do not compose well enough to
allow the optimization of multi-domain applications [46]. Optimized libraries allow programmers
to build applications from high-performance routines, the use of which, however, is still restricted
to expert users and requires manual effort to port legacy code [45].

We propose the idea of loop tactics and its implementation as a framework to express computa-
tional patterns and corresponding transformations declaratively. The idea is illustrated in Figure 1.
By expressing the computational pattern declaratively on a higher-level (polyhedral) representa-
tion, and the transformation to apply in terms of basic-block components, we make it easier to
embed domain-specific optimizations directly into a general-purpose compiler that is unaware of
domain-specific representation. Furthermore, the pattern matching capability allows the compiler
to recognize program fragments corresponding to highly optimized vendor routines. Such frag-
ments can be replaced—transparently for the application—with efficient library calls whenever
available or automatically transformed otherwise. Loop Tactics combines1 polyhedral analyses
and program transformations with more conventional compiler construction techniques based on
tree rewriting. It is built on top of the popular isl library [50] and provides a declarative C++ API.

We make the following contributions:

• Loop Tactics, a framework for declaratively expressing computational patterns and a set of
transformations as matcher-builder pairs in the polyhedral model (Section 3).

1We use the singular third-person for Loop Tactics.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



Declarative Loop Tactics for Domain-specific Optimization 55:3

• Its implementation embedded both into a source-to-source compiler and a general compi-
lation flow based on LLVM (Section 4).

• We demonstrate how to use Loop Tactics to perform domain-specific optimizations [22, 31],
notably reducing code complexity and footprint compared to manual pattern matching [15]
(Sections 5.1 and 5.2).

• We demonstrate how to use Loop Tactics to invoke routines from vendor-optimized libraries
automatically and transparently. If optimized routines are not available for the target or no
patterns are detected, then the generated code is on par with Polly [19] and competitive
with Pluto [7]—both of them state-of-the-art polyhedral optimizers (Section 5.3).

2 POLYHEDRAL COMPILATION

The polyhedral model is a unified framework to model and transform loops in imperative pro-
grams [14]. After more than three decades of active research and attempts to integrate this model
into production compilers [6, 21, 36], the polyhedral model has recently attracted renewed at-
tention as a method for generating efficient code that targets both CPUs and accelerators from
domain-specific languages [34, 49]. Iteration domains, access relations, and schedules are the core
constituents of the model.

2.1 Domains and Memory Accesses

The algebraic representation is based on integer sets and relations. The model applies to static con-
trol parts (SCoPs) that consist of loops whose boundaries are affine functions of the surrounding
loop iterators and parameters (values that are unknown at compilation time but constant at run
time). Every iteration of these loops is identified by an integer vector in a k-dimensional space,
where k is the depth of nested loops, the coordinates of which correspond to the values of the loop
induction variables. Each statement other than control-flow constructs has an associated symbolic
name and a set of integer vectors describing the iterations at which it is executed, commonly re-
ferred to as the iteration domain. When the static control conditions are respected, the iteration do-
main can be concisely denoted by a system of affine inequalities. For example, the iteration domain
of the GEMM kernel in Listing 1 is expressed as {S1 (i, j ) | 0 ≤ i, j < N ;S2 (i, j,k ) | 0 ≤ i, j,k < N } in
the tagged-tuple notation introduced by iscc [51], where N is a parameter. Individual executions
of statements inside loops are called statement instances.

Listing 1. Generalized matrix multiplication kernel.

Internal computation is rendered as arithmetic expressions and function calls with array ele-
ments as arguments. The conditions imposed on the array subscripts are essentially the same as
the control-flow conditions. Array accesses can be thus precisely encoded as relations between
vectors in the iteration space and vectors in the array space whose coordinates are values of the
accessed subscripts. These relations are defined by piece-wise quasi-affine functions. In our run-
ning example from Listing 1, the access relation for statement S1 is {S1 (i, j ) → beta();S1 (i, j ) →
D(i, j );S1 (i, j ) → C(i, j )}.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



55:4 L. Chelini et al.

Fig. 2. Schedule tree representation of Listing 2.

2.2 Schedule Trees

The iteration domain defines the statement instances that should be executed but not their order.
The latter is defined by a schedule that maps points in the iteration space to points in the time space.
Although it is possible to express schedules as relations or piece-wise quasi-affine functions, it is
often undesirable to do so, because statements are likely to share part of their schedules due to
the commonly nested structure of the code. In addition, it is also necessary to reflect the relative
syntactic order of loops and statements within them, which is often achieved through auxiliary
dimensions whose values are always constant for the given statement. For example, the schedule
of Listing 2 in relation form is {S (t , i, j ) → (t , i, j, 0);T (t , i, j ) → (t , i, j, 1)}. Note the duplication of
(t , i, j ) and the presence of auxiliary dimensions to specify the execution order within the loop
nest.

Addressing these challenges, Verdoolaege et al. [53] proposed schedule trees as a way to repre-
sent schedules in the polyhedral model. In schedule trees, statements that share a common partial
schedule share an ancestor that describes this partial schedule, thus removing duplication. This
loop nesting maps naturally to a parent-child relation, whereas textual ordering maps to the left-
to-right order of sibling nodes.

Nodes in schedule trees can be one of numerous types. Let us briefly present node types relevant
to our examples:

• Domain—the iteration domain, always located at the root of the tree;
• Band—partial schedule of one or multiple loops

(the name refers to the notion of a tilable band of loops [7]);
• Filter—restricts the instances of the iteration domain;
• Sequence—imposes the order among its children;
• Extension—introduces new statement instances local to the subtree with respect to its prefix

schedule.

All nodes except sequence have at most one child. Listing 2 presents a 2D stencil program. The
corresponding schedule tree is depicted in Figure 2. It uses two band nodes: the outer one pro-
vides a partial schedule representing the individual time steps, whereas the inner one provides
a partial schedule enumerating all data points within a given time step. Loops cannot be inter-
changed across bands. Finally, the individual statement types are enumerated within a sequence
node. When combined across all dimensions, the schedule tree defines the execution order of the
program.

The tree structure not only simplifies the schedule representation but allows the easy application
of local transformations. Such transformations include the combination of nested band nodes into

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



Declarative Loop Tactics for Domain-specific Optimization 55:5

a single band, the splitting of a multi-dimensional band node into individual bands, but also more
complex modifications such as band tiling or compositions of affine transformations.

Listing 2. A 2D 5-point stencil kernel.

3 DECLARATIVE LOOP TACTICS

With Declarative Loop Tactics, we introduce a framework to make modern constraint-based loop
transformations as accessible as classical tree-based compiler transformations. Unlike conven-
tional compilation approaches centered around syntax trees, polyhedral compilation techniques
typically operate on some representation of a schedule disconnected from any syntactic form. Such
schedule representations are algebraic objects allowing an entirely new schedule to be computed
as a solution to a (sequence of) linear optimization problems. In doing so, however, polyhedral
transformation acts as a black box for compiler developers, leaving them with the only option of
manual optimizations if imprecise cost functions are used to solve the linear optimization problem.
Unlike polyhedral compilation flows, Declarative Loop Tactics—thanks to the nature of the sched-
ule tree representation that combines schedule and syntactic aspects in a tree shape—allows com-
piler developers to transform suitable programs step-by-step, combining tree manipulation mech-
anisms that are commonplace in compilers with the precise analyses of the polyhedral model.
In the following, we present our framework, built around tree and access relation matchers de-
scribing computational patterns and schedule tree builders describing loop transformations. We
start by informally introduce Loop Tactics using examples, while Section 6 provides a more formal
description of the syntax using the extended Backus-Naur form.

3.1 Polyhedral Schedule Tree Matchers

General concepts. A schedule tree matcher enables a declarative description of a pattern in the
schedule tree. It essentially replicates the node type–based structure of the schedule tree with
additional filtering and wildcarding capabilities. A node matcher consists of an expected (possibly
unspecified) node type, a list of children nodes, and an optional filter. In addition to all schedule tree
node types, it may expect any node type or a non-empty list thereof. Tree leaves can be matched
explicitly using a special node type. As an example, the matcher shown in Listing 3 matches all the
sub-trees starting at a sequence node with exactly two filters as children, the first of which has a
permutable band as a child (checked via a Loop Tactics–provided function isPermutable) while
the second has no children.

Listing 3. Schedule tree matchers declaratively describe the structure of a tree.

Matching Procedure. A tree matcher is specified by the top node it must match, referred to as rel-
ative root. The matching procedure starts at the specified node in the schedule tree and performs

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



55:6 L. Chelini et al.

a simultaneous depth-first pre-order traversal of the schedule tree and the tree formed by descen-
dants of the relative root matcher. If a mismatch is detected until the entire matcher is traversed,
then it is immediately reported, and the traversal stops. Multiple patterns can be recognized at
once using classical prefix-tree and self-similarity approaches.

Programming Interface. The API to construct schedule tree matchers is designed to visually re-
semble the structure of the tree itself in a declarative way. Named variadic functions correspond to
node types, and the argument lists enumerate children nodes. This approach enables static check-
ing of tree invariant properties (e.g., some node types only allow to have one child) or only children
of a specific type. Leading arguments include optionally a filtering function and a reference to the
“placeholder” node. The filtering function allows the caller to control the matching more precisely
by considering non-structural aspects of the schedule tree such as permutability or number of
schedule dimensions. For example, identifying a permutable band node requires both structural
and non-structural properties, as shown in Listing 3. The references are used to capture certain
nodes in the matched subtree, similarly to captured groups in regular expressions, for future use
by the caller. If the captured nodes are non-empty, then the underlying subtree is guaranteed to
have the structure described by the matcher.

3.2 Polyhedral Schedule Tree Builders

The imperative-style schedule tree construction interface provided by isl does not allow for declar-
ative tree construction. As a consequence, we provide schedule tree builders whose programming
interface is close to that of the tree matchers. Named variadic functions specify the type of the
node. The nesting of the function calls reflects the structure of the tree, and the optional leading
arguments accept functions that are used to build the non-structural properties of each specific
node type (partial schedules for band nodes, conditions for filter nodes, and so on). You can think
of a builder as a description of the subtree to build. It may be transformed into a stand-alone tree if
needed (i.e., if it is rooted at a domain or an extension node) or grafted at a leaf of an existing tree.

Listing 4 shows how matchers and builders can be combined together to tile a simple rectangular
loop. The matcher looks for permutable band nodes anywhere in the tree and captures both the
node (scheduleTree) and its child subtree (body). Permutability for a given band is tested using
Loop Tactics’ function isPermutable. The builder splits the node into two nested bands by taking
the integer division and the modulo parts of the schedule via Loop Tactics–provided functions
tileSchedule and pointSchedule. The child subtree is kept intact. The example can be extended
to support more advanced transformations like full/partial tile separation or to limit tiling to the
deepest bands without losing a significant portion of the transformation code clarity.

Listing 4. Declarative specification of rectangular loop tiling. Functions tileSchedule and pointSchedule di-

vide and take modulo tile sizes, respectively.

3.3 Polyhedral Relation Matchers

General Concepts. Polyhedral relation matchers allow the caller to identify relations that have cer-
tain properties in a union of access relations [4, 38]. The capturing mechanism operates through

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



Declarative Loop Tactics for Domain-specific Optimization 55:7

placeholders, each of which has two data components: a constant pattern and a variable candi-

date. Each relation is checked against the pattern and, in case of a match, may yield one or more
candidates. The description of what constitutes a match and how the candidates are generated is
external to the matching engine and can be provided by the user. An example of a pattern that
yields multiple candidates is “access relation with one output dimension fixed to a (literal) con-
stant.” In this case, a candidate may be generated for each output dimension fixed to a constant
or, for other use cases, for each value of the constant.

A match is an assignment of candidates to placeholders. One union of relations may yield zero
or more matches against the given matcher. In many cases, candidates assigned to different place-
holders are required to be distinct. We require this by default, considering other cases to be invalid

assignments. At the same time, if a placeholder is reused within the same matcher expression, we
also require that all appearances be assigned the same candidate. In any case, the candidate com-
parison only takes the candidate descriptions into account, not the differences between spaces of
the relations. This behavior allows the matcher to connect different relations in the union with
greater precision. For example, it captures the fact that two relations exist that are either both bi-
jective or both non-bijective. To support edge cases, the user can override the definition of a valid
assignment, for example, to allow the same candidate to be assigned to different placeholders.

Matching Procedure. The matching procedure is decoupled into two stages, which provides suffi-
cient flexibility without sacrificing performance. First, the engine traverses all relations one-by-one
and defines the set of suitable candidates for each placeholder. If at least one of the placeholders
has no suitable candidates, then the absence of a match is reported immediately, and the proce-
dure stops. Then the engine traverses the space of all possible assignments of candidates to the
placeholders and checks whether the assignment is valid. As the space of possible assignments
is combinatorially large, we opt for a branch-and-cut traversal approach. Partially formed assign-
ments are passed to the validation function before adding more placeholder-candidate pairs to
the assignment. If the partial assignment is reported to be invalid, then further exploration is not
performed. This approach can be easily transformed into a branch-and-bound approach, if the as-
signment needs to be optimal in some sense, or altered to change the exploration to validation
ratio if the validation itself is expensive.

Programming Interface. Implementation of the matching procedure, or the matching engine, is
a template definition in the C++ sense. An instantiation of the matching engine is specified by
data structures for the pattern and the candidate. In addition, it implements functions to define a
set of candidates for a given access relation and whether a candidate assignment to the matchers
constitutes a valid match. We provide pattern and candidate descriptions for affine expressions
ω = k ∗ ι + c , where k and c coefficients form the pattern whereas ω and ι define a candidate by
matching one of the output and input dimensions, respectively. When targeting access relation
unions, we can assume that the source space of all relations is the same (e.g., the schedule space),
so it is convenient to operate only within the relation range.

The programming interface is similar in spirit to that of schedule tree matchers, except for the
tree parent-child relations, and is based on nested function calls that progressively construct the
matcher. Listing 5 illustrates how one can identify whether the same 2D array is accessed directly
and with transposition.

Listing 5. Access relation matcher for transposed accesses.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



55:8 L. Chelini et al.

Fig. 3. Loop Tactics can be easily integrated into the architecture of state-of-the-art optimizers. It can be

placed immediately after a general-purpose polyhedral optimizer (affine scheduler) or replace it.

Sometimes, it is also more convenient to consider individual output dimensions separately. For
example, in the transposed access case, the caller would like to know whether, in {(i, j ) → A(a1 =

i,a2 = j ); (i, j ) → B (b1 = j,b2 = i )}, the first dimension of the output space in one relation (a1) is
equal to the second dimension of the output space in another relation (b2). We handle such situa-
tions by augmenting the pattern description with the expected position in the output space, thus
projecting the access relation onto that dimension and continuing to check the properties of a
relation with one-dimensional output space. Such per-dimensional behavior is particularly useful,
for example, to detect the presence of temporal or spatial locality in array accesses.

4 COMPILATION FLOW

Before proceeding with the evaluation, let us describe where Loop Tactics fits into different com-
pilation flows. The high-level view is illustrated in Figure 3. Loop Tactics can be applied instead
of or in addition to an existing affine scheduler, operating on schedule trees. It relies on the caller
to supply the input as schedule trees and convert the transformed trees back into the original
representation. As such, it is applicable to both source-to-source and IR-to-IR flows.

4.1 IR-to-IR Flow

First, we demonstrate how Loop Tactics is embedded into the LLVM infrastructure by leveraging
Polly [19]. Loop Tactics is not concerned with lowering to the LLVM IR or performing target-
specific low-level optimizations such as instruction selection. Polly processes the input LLVM IR to
detect the parts of the IR that are suitable for optimization, referred to as SCoPs. It then represents
the IR as a schedule tree that Loop Tactics can consume. Polly may run an affine scheduler [55]
that transforms the tree before sending it to the Loop Tactics framework. Pattern detection using
tree matchers and transformations using tree builders occur as additional passes that modify the
schedule tree. After all the optimizations have been performed, Polly translates the schedule tree
into an AST and then further down into the LLVM IR. We use this flow in Sections 5.1 and 5.3,
where we compile LLVM IR down to executable using LLVM tools.

4.2 Source-to-source Flow

For source-to-source compilation, we embedded Loop Tactics into the pet tool [52], which we
use to extract SCoPs from C code and produce C or CUDA code. Similarly to Polly, pet relies on
isl’s schedule trees, making it possible to (largely) reuse the integration of Loop Tactics into the

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



Declarative Loop Tactics for Domain-specific Optimization 55:9

polyhedral flow. After the tree has been transformed by the affine scheduler and/or Loop Tactics,
we send it back to pet for code generation. To obtain a final executable, we rely on general-purpose
compilers such as the Intel compiler as described in Section 5.2.

5 EVALUATION

In this section, we evaluate the applicability of our framework by considering two domain-specific
optimizations for GEMM-like and stencil kernels. The former is based on a recently introduced
custom optimization pass in Polly that re-creates hand-tuned optimizations for GEMM-like kernels
(see Section 5.1). The latter focuses on a data-layout transformation to reduce stream alignment
conflicts in stencil patterns, namely dimension-lifted transposition (Section 5.2). Subsequently, we
show how Loop Tactics can be used to call routines from vendor-optimized libraries transparently
if such libraries are available for the target. Otherwise, it generates optimized code (see Section 5.3).
For the case studies considered here, the hardware platforms are a Volta V100 GPU, an IBM Power
9 AC922 clocked at 3.8 GHz, and an Intel Core i7-7700 (Kaby Lake family) clocked at 3.6 GHz with
Intel Turbo Boost up to 4.2 GHz. Intel Turbo Boost is disabled. Every single measurement or result
reported in the following sections is the arithmetic mean of five runs.

5.1 Hand-tuned GEMM-like Optimization

Generalized matrix multiplication (GEMM BLAS kernel) is one of the important computation pat-
terns and is the most commonly optimized kernel in history [31]. However, state-of-the-art com-
pilers achieve only a fraction of the theoretical machine performance for a simple textbook-style
implementation [15]. A recent improvement within Polly introduced a custom transformation
for GEMM-like kernels that is controlled outside of the main affine scheduling mechanism [15].
This transformation applies to a generalized case of tensor contraction of the form C[i][j] =
E(A[i][k], B[k][j], C[i][j]), where the dimension k is contracted and E represents some
operations between tensors. The matrix–matrix multiplication from Listing 1 is an example of such
a contraction with E = (×,+).

Candidate loops. To qualify for the transformation, the kernel must:

• be a perfectly nested loop that satisfies the requirements of the polyhedral model;
• contain three non-empty one-dimensional loops with induction variables incremented by

one;
• contain an innermost statement CπC (I J ) = E (Aπ A(I K ),Bπ B (K J ),CπC (I J ) ), where Aπ A(I K ) ,

Bπ B (K J ) , CπC (I J ) and πA(IK ), πB (KJ ), πC (I J ) are accesses to tensors A, B, C and permuta-
tions of the enclosed indices, respectively. The term E is a generic expression that contains
at least three reads from tensors A, B, and C;

• ensure that the interchange of I and J is valid, whereas K is interchangeable if and only if
K contains only one element, or an associative operation is used to update C .

The candidate loops are found by implementing the aforementioned conditions as schedule tree
and access relation matchers with a set of callback functions (Listing 6). In particular, we look for
a subtree containing a three-dimensional permutable band with a single statement (leaf) featuring
specific access patterns: at least three two-dimensional read accesses to different arrays, one write
access, and a permutation of indices that satisfies the placeholder pattern [i, j]→ [i,k][k, j].

Expressing transformations. The domain-specific optimization is derived from Reference [31]
as follows: First, we rearrange the band dimensions such that j will be the outermost dimen-
sion, followed by k and i. Then, we apply multi-level tiling and loop interchange to create three
nested loops around the macro-kernel and two additional nested loops around the micro-kernel.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



55:10 L. Chelini et al.

Listing 6. Schedule tree and access relation matcher for a tensor contraction C → α ×C + β ×A × B. Call-

back functions is3D and isPermutable to test node properties are also shown. Simply changing one line in

the access relation matcher callback (hasGemmPattern) is enough to capture other patterns (i.e., syrk). See

Section 5.3 for more details.

Specifically, the builder for the macro-kernel reported in Listing 7 on the left performs L2-cache
tiling and interchanges the newly created point loops. Tiling is applied using Loop Tactics’ func-
tions tileSchedule and pointSchedule, whereas loop interchange uses swapDims. After apply-
ing the first builder, we define and apply the second builder to create the micro-kernel loops by
tiling the point loops such that they fit into vector registers and fully unroll the new innermost one
to simplify subsequent vectorization. Loop unrolling is performed using the Loop Tactics’ function
unrollAll. Finally, we perform the packing transformation expressed as a matcher-builder pair by
relying on the existing data-layout infrastructure available in the polyhedral optimizer (Listing 7,
right-hand part).

Listing 7. Macro-kernel builder (left) performs tiling and loop permutation for L2-cache locality. Micro-

kernel builder (right) performs further tiling and unrolling to enable vectorization.

Evaluation. To evaluate the quality of our implementation, we hash the binaries generated
by our custom Polly, with Loop Tactics embedded, with an original version containing the cus-
tom transformation (git: commit 592b2406) and compare them for strict equality. We consider

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



Declarative Loop Tactics for Domain-specific Optimization 55:11

Fig. 4. Performance obtained for double and single-precision operands. The GEMM tactic produces the same

binary code as a hand-tuned, Polly’s custom transformation.

Fig. 5. The GEMM tactic reduces the compiler code footprint by almost a factor of 2 compared to the Polly’s

custom transformation.

a tensor contraction with E = (×,+) of the form C → α ×C + β ×A × B, where A, B, and C are
square matrices and α and β are constants set to 1 as in Reference [15]. We use the compila-
tion strings Clang -O3 -march=native -mllvm -polly -ffp-contract=fast -ffast-math
and Clang -O3 -march=native -polly -mllvm -polly-enable-matchers-optimization
-ffp-contract=fast -ffast-math for the original Polly and the modified one, respectively.
Identical binaries imply the same performance as shown in Figure 4, which presents the results
for a single-threaded implementation using double and single-precision operands on the Intel ma-
chine. Each plot shows the achieved GFLOP/s on the y-axis versus the matrix dimensions on the
x-axis. Both Loop Tactics and the Polly’s custom transformation achieved non-negligible speedups
compared with Clang -O3 -march=native (Clang - no detection). However, the combination of
matchers and builders is able to reduce the compiler code footprint by a factor of almost 2 (see
Figure 5). In addition, it is now possible for compiler developers to add highly customized opti-
mizations within a short time frame of weeks instead of months as for ad hoc pattern matching [15].
Finally, as fast compilation time is important, we evaluate the overhead introduced by Loop Tac-
tics. To do so, we compare the compilation time of our custom Polly with the original version, both
compiled in Release mode. The original version takes 0.354 seconds, while Loop Tactics takes 0.362
seconds, which correspond to only a 2% increase. Loop Tactics introduces a negligible compile-time
overhead.

5.2 Short-SIMD Stencil Vectorization

Stencils represent an important class of computation patterns used in many scientific domains
[42, 47]. As they typically involve accesses to multiple adjacent array elements along multiple
dimensions inside nested loops with (mostly) static control flow, they fit the polyhedral model.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



55:12 L. Chelini et al.

Unfortunately, polyhedral compilation based on affine scheduling is often counterproductive
for stencils. Direct attempts to minimize dependence distances lead to serialization of compu-
tation or complex control flow overhead or both, making the transformed code slower than the
original [54, 58]. Several techniques, more or less closely related to the polyhedral compilation,
address specifically stencil parallelization and vectorization [18]. As these techniques are often
not adapted to non-stencil cases, one must first find the stencil-like part of the program and then
apply the transformation. Let us illustrate how an effective technique to remove stream-alignment
conflicts through a data-layout transformation [22] can be expressed in our framework.

Candidate loops. The data-layout transformation (DLT) technique [22] applies only to vectoriz-
able innermost loops with no loop-carried dependencies. In schedule tree nomenclature, we should
start by finding all band nodes that have no other band nodes as children and that have the last co-
incidence flag set (assuming that coincidence—the possibility of parallel execution—was computed
based on all dependencies). This is shown in Listing 8.

Listing 8. Tree matcher for DLT transformation.

If the band is permutable, then it does not matter whether the coincident flag is set for the
last dimension or any other dimensions of the band members, because the loops can be trivially
permuted. This extension to the original technique and the corresponding tree transformation are
easy to propose and implement in our approach, but were not considered in the original paper. The
transformation validity is further restricted to statements that access either the same or contiguous
elements of an array in consecutive iterations of the innermost loop. This can be represented by
stating that the innermost accesses dimension (Python-style index -1) must have a stride of either
0 or 1, as shown in Listing 9.

Listing 9. Access relation matchers for DLT transformation.

Vector-lane conflicts. Finally, DLT is only necessary when vector-lane conflicts exist that cannot
be removed through loop shifting or, in particular, if the same value is accessed through different

references in different iterations of the innermost loops. This condition can be transformed into a se-
quence of set operations forming a system of constraints followed by an emptiness check. Although
it can be used inside the relation matcher to create a list of candidates before checking whether all
accesses do indeed match, it is arguably more pragmatic to perform the operations directly.

Expressing data-layout transformation. The data-layout transformation consists of placing ad-
jacent array elements at a distance of L from each other, where L is the number of vector lanes.
Figure 6 shows the original and the transformed memory layout for L = 4. It can be seen that
previously adjacent array elements (i.e., A and B) are now spaced further apart. The data layout
mapping can be expressed as an affine function{

(�ι, i ) → (�α ,a) | �α = �ι ∧ a = L · i − (BU − BL ) ·
⌊

i · L
BU − BL + 1

⌋}
, (1)

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



Declarative Loop Tactics for Domain-specific Optimization 55:13

Fig. 6. Data layout transformation for a SIMD with four vector lanes. Elements mapping to vector slots in

vector registers of four elements each is also shown.

where BL and BU are the lower and the upper inclusive bounds on the accessed elements, respec-
tively. Figure 6 further shows how elements map to vector slots in vector registers of four elements
each for a single iteration of a Jacobi-3pt stencil. Array elements in the layout transformed can be
loaded into the vector slots using aligned loads. Therefore, the compiler does not need to issue
additional non-aligned loads to bring interacting elements in the same vector slot before perform-
ing the arithmetic operation, as it is the case for the original layout. If this transformation had
been performed on the iteration space rather than on the subscript space, then it would have cor-
responded to loop strip-mining followed by loop interchange and coalescing. Once such a union
of affine functions is constructed, it can be used in a tree builder that injects the transformation
as presented in Listing 10. First, the builder introduces the new statements for the copies “to” and
“from” the transformed array through an extension node, lines 7–9 and 13–15, respectively. Below
the extension node, copies “to” are scheduled before the main computation (lines 10–12), which
itself is scheduled before the copies “from” using a combination of sequence and filter nodes. Fi-
nally, partial schedules are specified for the copies, and the original subtree is replicated for the
main computation. In practice, the transformation is only applicable to loop iterations that fully
fit into vector lanes2 and requires additional edge-case handling otherwise. Although these edge
cases can also be expressed declaratively as tree builders, they are not essential to our presentation,
so we have omitted them for the sake of clarity.

Listing 10. Loop Tactics enables easy integration of data-layout transformations using builders to inject

copy-in and copy-out around the main computation.

2For example, this can be ensured with full/partial tile separation, given that the tile size is equal to the number of vector

lanes.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



55:14 L. Chelini et al.

Listing 10 also lays the foundation for most data-layout or memory-related transformations that
rely on copying the data to and from one array to another. Most such transformations follow the
extension/sequence/3-filter pattern where only the properties of nodes are different. Copies “to”
or “from” may be omitted in cases where the initial or the final values are irrelevant to the task,
creating two other possible tree transformation patterns.

Access rewriting. The final step of DLT consists of changing the original stencil computation
to access the transformed array instead of the original one and, optionally, emitting vectorization
pragmas. To enable vectorization, it is necessary to access the transformed array in sequential order,
and the data required by each iteration now needs different subscripts. In particular, adjacent ele-
ments are now located at a distance of L. This can be easily expressed using our relation-rewriting
mechanism (Listing 11). The pattern constitutes the stride-1 access subscript to be transformed,
whereas the candidate is an affine function that defines the new subscript and array name. This
affine function consists of a linear and a constant part, and the latter needs to account for the
vector length chosen and the boundary cells introduced.

Listing 11. Rewriting access relations for DLT transformation.

Evaluation. We implement the DLT tactic in the source-to-source compilation flow by relying
on ICC to vectorize our transformed code, as was done in Reference [22]. To evaluate the qual-
ity of our transformation, we apply the DLT to four variants of the Jacobi kernel—a three-point
single-dimensional stencil, a five-point “star,” a nine-point “box” two-dimensional stencil, and a
seven-point three-dimensional stencil. While building our tactic, we consider L = 8, the number
of vector lanes, to exploit the highest vector instruction set available on our Intel i7-7700 (AVX2).
Nevertheless, L is merely a parameter and can be changed to address wider or narrower vector
extensions. We compile using the Intel C compiler ICC v19.0 with the -O3 -xHost options. We
compare the layout-transformed ICC auto-vectorized version generated by our compilation flow
with a reference auto-vectorized code (without layout transformation). The original program is
tiled such that all the references fit nicely in the L1 cache, as done in Reference [22]. Similar to
Reference [22], we assume an outer loop with T iterations around the stencil loops—as it is com-
mon in stencil codes—such that a one-time layout transformation cost to copy from the original
layout to the transformed one represents a negligible overhead. For the stencils observed, consid-
ering T = 500 as in Polybench 4.1, the overhead introduced is less than 3% of the total execution
time, hence, we donot account for it. The speedups for single-precision operands are shown in
Figure 7. The auto-vectorized DLT code improves upon the reference code in all cases. Perfor-
mance gains are due to the reduction in unaligned loads in the innermost loop. For the 3-pt sten-
cil, the speedup is minimal. Even though the number of unaligned loads is slightly reduced for
1D stencils, the overhead of a small number of additional loads is well hidden by modern CPU
architectures. However, the 5-pt, the 9-pt 2D, and the 7-pt 3D stencils achieve speedups of 50%,
23%, and 11%, respectively, due to a significant reduction in unaligned loads and reduced register
pressure. The assembly snippet in Listing 12 shows two innermost loop computations for a 3-pt
stencil. Computation with the DLT array (A_DLT) shows fewer memory loads compared with the
original computation.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



Declarative Loop Tactics for Domain-specific Optimization 55:15

Fig. 7. Speedup for Jacobi kernels. Ref is the auto-vectorized version without data layout transformation.

DLT is the auto-vectorized version with layout transformation.

Listing 12. Comparison between the original computation and the one after data-layout transformation.

DLT effectively reduces loads from A reference.

5.3 Transparent BLAS Optimization

Matching Libraries. Until now, we have demonstrated how Loop Tactics enables domain-specific
optimizations by specifying custom transformations for a given computational pattern. However,
Loop Tactics matching mechanism can also be used to recognize code fragments that correspond
to common high-performance library calls. Such vendor-optimized libraries are often necessary to
achieve peak performance on accelerators [32]. Thus, Loop Tactics matching mechanism opens up
the possibility to invoke automatically and transparently for the application routines from vendor-
optimized libraries. Domain-specific compilers such as Halide [39], TVM [11], and Tensor-flow [1]
already lower high-level constructs to vendor-optimized routines; however, they focus on spe-
cific domains. Loop Tactics aims at enabling such optimization in general-purpose compilers. We
illustrate how this can be achieved in a portable way by Loop Tactics targeting both CPU and
GPU BLAS libraries. BLAS parameters (i.e., values of α and β) are automatically collected by Loop
Tactics. For GPUs, Loop Tactics handles the data transfers as demonstrated in Listing 10. We im-
plemented matchers for level-3 BLAS GEMM, SYMM, SYRK, SYR2K, TRMM, and a level-2 BLAS GEMV,
and applied them to all kernels in Polybench 4.1 using the LARGE input set. The BLAS kernels

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



55:16 L. Chelini et al.

are detected by composing together elementary matchers and elementary matchers that are reused

not only across targets but also across kernels. For example, the gemm pattern is expressed as two
elementary matchers as shown in Listing 13 where gemmInit detects an initialization statement
while gemmCore detects the GEMM core statement. The exact same matchers are reused for other
two kernels (2mm and 3mm). Moreover, just changing the access matchers callbacks (hasGemmPat-
tern) is enough to capture other patterns with the same tree structure (i.e., syrk). Similarly, the
same matcher for level-2 BLAS GEMV is reused for gemver, gesummv, bicg, and mvt. Each matcher
is assigned a priority that implements its firing policy. Matchers for level-3 BLAS are assigned the
same priority, which is higher than those for level-2. Among matchers with the same priority, the
firing policy is decided by the user.

Listing 13. Matchers can be reused and composed together. The GEMM pattern can be expressed as a com-

position of two elementary matchers (gemmCore and gemmInit). Changing the access relation matcher call-

back hasGemmPattern with hasSyrkPattern is enough to reuse the same matchers to capture other patterns

with the same tree structure (i.e., syrk). hasSyrkPattern can be easily derived as shown in Listing 6.

Evaluation. Figure 8 compares the achieved GFLOP/s for double-precision operands using Loop
Tactics, an original Polly version (git commit 592b2406) and the Pluto source-to-source compiler
(git commit f62d61b8). We compare with the out-of-the-box optimizations available in Polly and
Pluto. Besides, for BLAS kernels (gemm to mvt), where Loop Tactics invokes highly optimized rou-
tines, we use the Pluto compiler to explore different fusion heuristics and tile sizes. Specifically, for
each selected benchmark, we generate several variants for each tile size and fusion heuristic avail-
able in Pluto (maximum fusion, no fusion, and smart fusion). The set of tile sizes chosen are powers
of two and non-powers of two. We choose an interval from 1 up to one-fourth of the problem size,
including non-powers of two sizes for every two powers of two tile sizes [27]. For each benchmark,
the explored space consists of more than 3K variants; we report the best founded (Pluto best). The
optimized code generated by Pluto is lowered to binary using native compilers. We use XLC 16.1
for the Power architecture and ICC v19.0 for the Intel one. The compilation strings are xlc -O4
-qhot -qarch=pwr9 -qtune=auto -qsimd=auto and icc -O3 -march=native for XLC and
ICC, respectively.

Results for the Power 9 are shown on top; results for the Intel i7-7700 CPU are shown at the bot-
tom. For Power 9, Loop Tactics’ performance exceeds or is comparable to that of Polly and Pluto.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



Declarative Loop Tactics for Domain-specific Optimization 55:17

Fig. 8. Loop Tactics outperforms Polly and is comparable with Pluto for double-precision operands (av-

erage of 5 runs) by matching library calls: (top) calling IBM ESSL on Power 9 with a theoretical peak of

30.4 GFLOP/s; (bottom) calling MKL on Intel i7-7700 CPU with a theoretical peak of 57.6 GFLOP/s.

The largest speedups are observed for trmm (16×) when comparing with Polly, while for symm
(8×) when comparing with the default Pluto optimization (Pluto default). The lowest speedups
are achieved for gemm (2×) and gemver (1.9×) when comparing with Polly and Pluto default, re-
spectively. If no BLAS kernels are detected (atax to seidel2d), then Loop Tactics generates code
that is on par with Polly. An exception is made for Jacobi stencils, where Loop Tactics is faster
due to DLT optimization. On-par performance with Polly has been achieved by relying on the isl

scheduler, as Polly does, and re-implementing Polly imperative tiling optimization, which is the
default Polly optimization, in our declarative style approach based on matchers and builders. An
example of how to implement tiling using Loop Tactics has been presented in Listing 4. When
we compare Loop Tactics’ results with Pluto, minor performance regression can be seen in the
stencil and solver benchmarks. Exception made, once more, for the Jacobi-2d stencil, thanks to the
DLT transformation. For Intel i7-7700, speedups are achieved for all except two BLAS kernels in
the benchmark. The largest speedups are for symm for both Polly and Pluto default: 14× and 17×,
respectively. The lowers are for gemm (1.30×) when comparing with Polly and for gemver (0.7×)
when comparing with Pluto default. The only benchmark where Loop Tactics performs worse than
Pluto and equal to Polly even by calling a BLAS function is gesummv. This loss in optimization

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



55:18 L. Chelini et al.

Fig. 9. Performance achieved for single-precision operands, average of five runs; (left) Loop Tactics produces

speedups over original Polly by calling CuBLAS on a Volta V100 GPU with a single-precision theoretical peak

of 15.7 TFLOP/s; (right) if lower-precision is acceptable during computation (i.e., 16-bit) Loop Tactics enables

the user to transparently exploit tensor cores for GEMM.

opportunity is the result of additional overhead introduced by Loop Tactics to acquire the library
handle dynamically. Such overhead is constant and around 1.5 ms. It can be avoided by static link-
ing3 and if so for the gesummv kernel, we expect to obtain the same performance as measured from
the MKL library, 2.73 GFLOP/s instead of 1.65 GFLOP/s. The other benchmark where Loop Tactics
produces worse performance than the tuned version generated with Pluto is gemver. The reason is
that only half of the statements can be mapped to BLAS calls; for the remaining statements, Loop
Tactics performs a simple default tiling strategy with squared tiles of 32 elements each. However,
Pluto performs aggressive loop fusion, which helps in reducing the control flow overhead and
tiling the fused loop, achieving better performance.

Finally, we evaluate the impact of Loop Tactics at compilation time. Here, we compare against
an original Polly version. Both Loop Tactics and Polly are compiled in Release mode. For the
25 kernels considered, the original version takes 14.88 seconds, while Loop Tactics 12.00 seconds,
which is a 20% reduction. The reduction is because at compilation time, only pattern detection is
performed by Loop Tactics, while optimizations happen at run time by linking with BLAS libraries.

Figure 9 (on the left) demonstrates how Loop Tactics improves performance over Polly by us-
ing the same matchers as CPU to automatically detect and call cuBLAS on an Nvidia Volta V100
GPU. We only illustrate the benchmarks where Loop Tactics detect BLAS kernels; as in the other
case, we fall back to Polly. The largest speedup is achieved for symm (148×). A minor performance
regression is obtained by calling the level-2 BLAS GEMV in gemver. Figure 9 (on the right) further
illustrates the performance achieved using GPU tensor cores, which are usable through vendor
libraries and currently inaccessible to Polly. For matrices of size 8,192, we achieve 88.8 TFLOP/s,
79% of the theoretical peak of 112.7 TFLOP/s. Manually using tensor cores requires the program-
mer to guarantee the following conditions: (1) only GEMM pattern supports tensor cores execution;
(2) the matrix dimensions should be multiple of eight; (3) math mode in cuBLAS should be set
to CUBLAS_TENSOR_OP_MATH; (4) input data type should fit in half-precision floating point. Loop
Tactics hides all this complexity and requires the user to only check (4), and, whenever possible,

3We opt for dynamic linking, usually the common way to interact with BLAS libraries, as it ensures binary portability [2].

Nevertheless, there is no restriction in Loop Tactics that will prevent us from switching to a static linking in the future,

if needed.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



Declarative Loop Tactics for Domain-specific Optimization 55:19

Fig. 10. Extended Backus–Naur form for matchers and builders on the left and extended Backus–Naur form

for access matchers on the right.

Table 1.

node type param node type param
context, guard set expansion, extension union_map
filter, domain union_set set, sequence void
mark id band multi_union_pw_aff

Loop Tactics will use tensor cores. Specifically, condition (1) is ensured by the matcher (Listing 13)
and condition (3) is implemented by Loop Tactics’ runtime library. If (2) does not hold, then Loop
Tactics will automatically fall back to not using tensor cores.

6 LOOP TACTICS SYNTAX

The syntax using the extended Backus-Naur form for matchers and builders is shown in Figure 10
and Table 1. Matchers and builders are designed to replicate the node type-based structure of
the schedule tree in a declarative way. Matchers take a callback and/or a reference to an sched-
ule_node object as optional leading arguments. A callback allows fine-grained control over the
matching procedure, whereas a reference will point to the matched node. Builders take either the
node kind-specific parameter as their leading argument or a callback that can produce them. Both
matchers and builders take a call to another matcher or builder as remaining arguments, respec-
tively. An exception is made for “leaf” and “anyTree.” Matchers and builders walk the schedule tree
using replaceDFSPreorder | replaceDFSPostorder | replaceBFS. The traversal functions take three
arguments: a node from where the traversal should start, a matcher to verify whether the subtree
rooted at the current node matches, and a builder that rebuilds the subtree in case of a match. We
allow multiple matches. Matchers can use “AnyTree” to capture any subtree, whereas builders can
use “subtree” to rebuild any subtree. The syntax for defining an access relation matcher is a func-
tion call that takes an optional array placeholder, followed by a list of dimension placeholders. The
position of the latter is specified by a “dim” call or is inferred from their position in the argument

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



55:20 L. Chelini et al.

list (see Figure 10). A union of relations can be matched against a list of matchers using “match” and
“allOf” or “anyOf” as combiners. “findAndReplace” finds and replaces a given pattern in a union
of relations. The candidate pattern and the replacement are built via the “replace” function call.

7 RELATED WORK

Optimizers with automatic scheduling. Years of research in automatic compilation led to sophisti-
cated general-purpose optimizers such as Pluto [8], Polly [21], and GRAPHITE [36]. Despite being
fully automatic, therefore increasing productivity, general-purpose optimizers donot always obtain
the best performance for commonly recurrent kernels. Suboptimal performance is, in most cases,
the result of a generic one-size-fits-all optimization strategy. Loop tactics enables such optimizers
to detect computational patterns easily and hook a custom optimization for each of them. Custom
optimizations can be expressed as composable transformations or call to optimized libraries. As
most of these optimizers already power production compilers such as GCC and LLVM, we also
expect general-purpose compilers will benefit from Loop Tactics.

Optimizers with scheduling languages. Kelly et al. proposed the first framework for high-level
transformations based on the polyhedral model [23]. Girbal et al. proposed the URUK framework to
apply loop transformations for cache hierarchy and parallelism using unimodular schedules [17].
Yuki et al. developed AlphaZ, a framework to express programs as a set of equations based on
the Alpha language and manipulated it using script-driven transformations [57]. The implemen-
tation also supports memory (re)-allocation and explicitly represents reductions. Similarly, Yi et al.
presented POET, an interpreted program transformation language designed for applying and ex-
ploring complex code transformations in different programming languages [56]. Donadio et al.
introduced Xlanguage, an embedded DSL based on C/C++ pragmas that allows users to generate
multi-version programs by specifying the type of transformations to apply as well as the trans-
formation parameters [13]. Bagnères et al. provided feedback from a polyhedral compiler by ex-
pressing it as a sequence of loop transformation directives [4]. Their input language, Clay, and
the related Chlore algorithm allow users to examine, refine, or freeze sequences of loop transfor-
mation directives. Chen et al. introduced CHiLL, a high-level transformation and parallelization
framework that uses a model-driven empirical optimization engine to generate and evaluate dif-
ferent code variants [10, 40]. Khan et al. built a meta-optimizer on top of the CHiLL compiler
to automatically generate transformation recipes and perform extensive autotuning [26]. Teix-
eira et al. proposed a language to express the collection of transformations that can be applied
to user-defined code regions [48]. Baghdadi et al. proposed Tiramisu a polyhedral compiler that
introduces novel commands to explicitly target distributed systems. More recently, Kruse et al.
submitted a proposal to improve pragma-based transformations in Clang [29]. All these tools ex-
pose some scheduling-based language to specify program transformations applicable to loops. But
the scheduling language can be seen as imperative, as it requires the user or the autotuner to
specify which loops are targeted using external tags or language-level annotations. Our approach,
however, is based on a declarative language. Instead of binding the transformation to a specific
loop, we declare how a compatible schedule tree should look like and express the transforma-
tion in terms of matched nodes and relations between them. Another difference with respect to
fully automatic compilers such as Halide [39] and TVM [11] is that Loop Tactics aims at bringing
domain-specific optimizations directly in general-purpose compilers, while Halide and TVM born
as domain-specific. Moreover, both Halide and TVM use intervals to represent iteration spaces.
Thus, non-rectangular iterations spaces cannot be naturally represented, which is not the case for
Loop Tactics.

Pattern matching. Algorithm recognition is a well-known problem in computer science and was
an ongoing and extensive research topic during the 1990s [12, 24, 25, 33]. Although the approach

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



Declarative Loop Tactics for Domain-specific Optimization 55:21

details vary considerably for their application domain, the underlying goal always falls under the
umbrella of program optimization. Previous works can be broadly classified accordingly to the
level of abstraction used to match a set of predefined constructs: text, syntactic, and semantic
level [28]. Text-level tools operate on the source code of the program directly. Syntactic ones work
at the abstract syntax tree level (AST), while semantic ones go one step further by annotating the
AST with data and control flow information.

Text-level and syntactic-level methods. Pottenger et al. implemented a pattern-recognition tool on
top of the Polaris compiler [5] to recognize and parallelize reduction operations [37]. Their method
directly matches code statements with a set of predefined patterns. It then uses a data-dependence
analysis to prove that all loop iterations refer to different elements of the reduced array. Sarves-
tani et al. introduced an idiom-detection tool for kernel recognition in DSP applications based
on the Cetus compiler [30, 41]. Each detected kernel is replaced with a highly optimized parallel
version. Patterns are described in XML format. Kessler et al. developed PARAMAT to detect and
replace code segments at the AST-level with calls to parallel library routines [24]. For FORTRAN
code, Di Martino et al. designed the PAP recognizer with the main focus of computer-aided pro-
gram analysis and parallelization [12]. The tools provide a graphical user interface that shows each
detected pattern and its corresponding source-line location. Bravenboer et al. proposed Stratego, a
language for program transformations using rewriting rules in the context of generative program-
ming (i.e., from code refactoring to code optimization) [9]. More recently, Clang AST matchers
have been developed as a domain-specific language for matching predicates on Clang AST. Con-
trary to our work, however, these approaches try to match code directly at the statement or AST
level. Hence, variations in the programming style have a huge impact on the effectiveness of such
tools. However, Loop Tactics is embedded into Polly, which runs in the latest stage of the LLVM
pipeline after inlining, constant expression propagation, and dead code elimination. Consequently,
by position, it is less strongly affected by programming style. Furthermore, Polly protects against
the linearization of multi-dimensional arrays, because it can recover the 2D structure [20]. Finally,
most of the tools mentioned above provide only pattern recognition and rely on directives or li-
brary calls to improve performance. However, Loop Tactics provides builders that can be used to
specify a specific transformation “recipe” for each detected pattern.

Semantic-level methods. The XARK compiler—perhaps the most representative example among
semantic-level methods—provides code recognition based on the analysis of Strongly Connected
Components (SCCs) [3]. SCCs are analyzed by looking at use-def chains in the Gated Single As-
signment (GSA) form, an extension of the SSA form. The detection of a given kernel is carried out
in two phases. In the first, the use-def chains are used to recognize basic statements such as con-
ditional linear induction variables and array assignments. In the second phase, the use-def chains
between statements are analyzed to identify more complex computation kernels (i.e., consecu-
tively written array and masked operations). Compared with Loop Tactics the XARK compiler—or
an SSA-based tool in general—has the advantage of being able to detect irregular access patterns
such as linked-list traversal. Detection of such patterns falls beyond the capabilities of the poly-
hedral model and hence of Loop Tactics. But SSA-based tools rely on the use of use-def chain on
scalar registers to reconstruct the access patterns, fundamentally limiting the complexity of the ac-
cess patterns that such tools can recognize. However, Loop Tactics uses access relations [4, 38] that
precisely and explicitly encode the relation between the iteration space and the array space. There-
fore, Loop Tactics can easily and concisely express complex access patterns on multi-dimensional
arrays and inspect all sorts of possible index permutations (i.e., transposed accesses as shown in
Listing 5). Other works at the semantic-level focus on specific families of patterns that can be cov-
ered by Loop Tactics. Suganuma et al. focused on reduction detection and parallelization [43]. Their

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.



55:22 L. Chelini et al.

algorithm inspects strongly connected components with cyclic dependences typical of reduction
operations. It then tries to recognize if the statement is actually a reduction by finding a reduction
operator and a reduction function. Gerlek et al. developed a technique to detect classes of induc-
tion variables based on the use-def chain available in the SSA form [16]. Pinter et al. proposed a
method for extracting parallelizable idioms from scientific applications [35]. Their technique uses
the computational graph, which encodes the flow of data and the dependencies among values in
the program. Recognition of computational idioms is carried out by matching specific patterns.
Matchers and replacement rules are described using the graph-specific grammar, similar to what
Loop Tactics does at the schedule tree level. However, their technique requires some preprocessing
steps such as loop distribution and unrolling to expose the kernels in the computation graph. Such
preprocessing steps are not needed in Loop Tactics. Sujeeth et al. in their DELITE framework use
rewriting rules to perform domain-specific optimizations [44]. Despite our approach being simi-
lar to what they propose, our end goal is not. With Loop Tactics, we aim at reducing the need of
developing DSL compilers by bringing domain-specific optimizations directly in general-purpose
compilers. Delite, however, aims at lowering the effort of developing DSLs.

8 CONCLUSION

This article presents Declarative Loop Tactics (Loop Tactics for short) and its implementation as a
framework to express computational patterns and transformations on schedule trees, an internal
representation of a polyhedral compiler. We show how Loop Tactics allows one to express domain-
specific optimizations directly in general-purpose compilers as a set of composable transformations
or as calls to optimized libraries. As a result, (1) we reduce the need to design domain-specific
compilers, (2) we allow the transparent use of vendor-optimized libraries, and (3) unlock the ef-
fective optimization of multi-domain applications. We expect our approach to extend the range of
optimizations significantly compared to what current general-purpose compilers can achieve by
allowing developers to plug in highly customized optimizations for a given computational pattern.

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In

Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16). 265–283.

[2] Varun Agrawal, Abhiroop Dabral, Tapti Palit, Yongming Shen, and Michael Ferdman. 2015. Architectural support for

dynamic linking. ACM SIGARCH Comput. Archit. News, Vol. 43. ACM, 691–702.

[3] Manuel Arenaz, Juan Touriño, and Ramon Doallo. 2008. XARK: An extensible framework for automatic recognition

of computational kernels. ACM Trans. Prog. Lang. Syst. 30, 6 (2008), 32.

[4] Lénaïc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. 2016. Opening polyhedral compiler’s black

box. In Proceedings of the International Symposium on Code Generation and Optimization (CGO’16). ACM, New York,

NY, 128–138. DOI:https://doi.org/10.1145/2854038.2854048

[5] William Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeflinger, David Padua, Paul Petersen, William

Pottenger, Lawrence Rauchwerger, Peng Tu, and Stephen Weatherford. 1995. Polaris: Improving the effectiveness of

parallelizing compilers. In Languages and Compilers for Parallel Computing, Keshav Pingali, Utpal Banerjee, David

Gelernter, Alex Nicolau, and David Padua (Eds.). Springer Berlin, 141–154.

[6] U. Bondhugula, S. Dash, O. Gunluk, and L. Renganarayanan. 2010. A model for fusion and code motion in an automatic

parallelizing compiler. In Proceedings of the 19th International Conference on Parallel Architectures and Compilation

Techniques (PACT’10). 343–352.

[7] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A practical and fully automatic polyhe-

dral program optimization system. In Proceedings of the ACM SIGPLAN Symposium on Programming Language Design

and Implementation (PLDI’08).

[8] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy Sadayappan. 2008. A practical auto-

matic polyhedral parallelizer and locality optimizer. ACM SIGPLAN Not. 43, 6 (2008), 101–113.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.

https://doi.org/10.1145/2854038.2854048


Declarative Loop Tactics for Domain-specific Optimization 55:23

[9] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. 2008. Stratego/XT 0.17. A language and

toolset for program transformation. Sci. Comput. Prog. 72, 1 (2008), 52–70. DOI:https://doi.org/10.1016/j.scico.2007.

11.003

[10] Chun Chen, Jacqueline Chame, and Mary Hall. 2008. CHiLL: A Framework for Composing High-level Loop Transfor-

mations. Technical Report. Citeseer. USC Computer Science.

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan

Wang, Yuwei Hu, Luis Ceze, et al. 2018. TVM: An automated end-to-end optimizing compiler for deep learning. In

Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI’18). 578–594.

[12] B. Di Martino and G. Iannello. 1996. PAP recognizer: A tool for automatic recognition of parallelizable patterns.

In Proceedings of the 4th Workshop on Program Comprehension (WPC’96) 164–174. DOI:https://doi.org/10.1109/WPC.

1996.501131

[13] Sebastien Donadio, James Brodman, Thomas Roeder, Kamen Yotov, Denis Barthou, Albert Cohen, María Jesús

Garzarán, David Padua, and Keshav Pingali. 2006. A language for the compact representation of multiple program

versions. In Languages and Compilers for Parallel Computing, Eduard Ayguadé, Gerald Baumgartner, J. Ramanujam,

and P. Sadayappan (Eds.). Springer Berlin, 136–151.

[14] Paul Feautrier and Christian Lengauer. 2011. Polyhedron Model. Springer, Boston, MA, 1581–1592. DOI:https://doi.

org/10.1007/978-0-387-09766-4_502

[15] Roman Gareev, Tobias Grosser, and Michael Kruse. 2018. High-performance generalized tensor operations: A

compiler-oriented approach. ACM Trans. Archit. Code Optim. 15, 3, Article 34 (Sept. 2018), 27 pages. DOI:https://

doi.org/10.1145/3235029

[16] Michael P. Gerlek, Eric Stoltz, and Michael Wolfe. 1995. Beyond induction variables: Detecting and classifying se-

quences using a demand-driven SSA form. ACM Trans. Prog. Lang. Syst. 17, 1 (Jan. 1995), 85–122. DOI:https://

doi.org/10.1145/200994.201003

[17] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc Sigler, and Olivier Temam. 2006.

Semi-automatic composition of loop transformations for deep parallelism and memory hierarchies. Int. J. Parallel

Prog. 34, 3 (June 2006), 261–317. DOI:https://doi.org/10.1007/s10766-006-0012-3

[18] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and Sven Verdoolaege. 2014. Hybrid hexago-

nal/classical tiling for GPUs. In Proceedings of the IEEE/ACM International Symposium on Code Generation and Opti-

mization (CGO’14). ACM, New York, NY, Article 66, 10 pages. DOI:https://doi.org/10.1145/2544137.2544160

[19] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012. Polly-Performing polyhedral optimizations on a

low-level intermediate representation. Parallel Proc. Lett. 22, 4 (2012), 1250010.

[20] Tobias Grosser, J. Ramanujam, Louis-Noel Pouchet, P. Sadayappan, and Sebastian Pop. 2015. Optimistic delineariza-

tion of parametrically sized arrays. In Proceedings of the 29th ACM International Conference on Supercomputing

(ICS’15). ACM, New York, NY, 351–360. DOI:https://doi.org/10.1145/2751205.2751248

[21] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin Größlinger, and Louis-Noël Pouchet.

2011. Polly-polyhedral optimization in LLVM. In Proceedings of the 1st International Workshop on Polyhedral Compi-

lation Techniques (IMPACT’11), Vol. 2011. 1.

[22] Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti, J. Ramanujam, and P. Sadayappan. 2011. Data

layout transformation for stencil computations on short-vector SIMD architectures. In Proceedings of the 20th Inter-

national Conference on Compiler Construction: Part of the Joint European Conferences on Theory and Practice of Software

(CC’11/ETAPS’11). Springer-Verlag, 225–245. http://dl.acm.org/citation.cfm?id=1987237.1987255.

[23] Wayne Kelly and William Pugh. 1998. A Framework for Unifying Reordering Transformations. Technical Report. Uni-

versity of Maryland.

[24] Christoph W. Kessler. 1996. Pattern-driven automatic parallelization. Sci. Prog. 5, 3 (Aug. 1996), 251–274. DOI:https://

doi.org/10.1155/1996/406379

[25] C. W. Kessler and C. H. Smith. 1999. The SPARAMAT approach to automatic comprehension of sparse matrix

computations. In Proceedings of the 7th International Workshop on Program Comprehension. 200–207. DOI:https://

doi.org/10.1109/WPC.1999.777759

[26] Malik Khan, Protonu Basu, Gabe Rudy, Mary Hall, Chun Chen, and Jacqueline Chame. 2013. A script-based autotun-

ing compiler system to generate high-performance CUDA code. ACM Trans. Archit. Code Optim. 9, 4, Article 31 (Jan.

2013), 25 pages. DOI:https://doi.org/10.1145/2400682.2400690

[27] Martin Kong and Louis-Noël Pouchet. 2019. Model-driven transformations for multi-and many-core CPUs. In Pro-

ceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, 469–484.

[28] W. Kozaczynski, J. Ning, and A. Engberts. 1992. Program concept recognition and transformation. IEEE Trans. Softw.

Eng. 18, 12 (Dec. 1992), 1065–1075. DOI:https://doi.org/10.1109/32.184761

[29] Michael Kruse and Hal Finkel. 2018. A proposal for loop-transformation pragmas. In Evolving OpenMP for Evolving

Architectures, Bronis R. de Supinski, Pedro Valero-Lara, Xavier Martorell, Sergi Mateo Bellido, and Jesus Labarta (Eds.).

Springer International Publishing, Cham, 37–52.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.

https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1109/WPC.1996.501131
https://doi.org/10.1109/WPC.1996.501131
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1145/3235029
https://doi.org/10.1145/3235029
https://doi.org/10.1145/200994.201003
https://doi.org/10.1145/200994.201003
https://doi.org/10.1007/s10766-006-0012-3
https://doi.org/10.1145/2544137.2544160
https://doi.org/10.1145/2751205.2751248
http://dl.acm.org/citation.cfm?id=1987237.1987255
https://doi.org/10.1155/1996/406379
https://doi.org/10.1155/1996/406379
https://doi.org/10.1109/WPC.1999.777759
https://doi.org/10.1109/WPC.1999.777759
https://doi.org/10.1145/2400682.2400690
https://doi.org/10.1109/32.184761


55:24 L. Chelini et al.

[30] Sang-Ik Lee, Troy A. Johnson, and Rudolf Eigenmann. 2004. Cetus—An extensible compiler infrastructure for source-

to-source transformation. In Languages and Compilers for Parallel Computing, Lawrence Rauchwerger (Ed.). Springer

Berlin, 539–553.

[31] Tze Meng Low, Francisco D. Igual, Tyler M. Smith, and Enrique S. Quintana-Orti. 2016. Analytical modeling is enough

for high-performance BLIS. ACM Trans. Math. Softw. 43, 2, Article 12 (Aug. 2016), 18 pages. DOI:https://doi.org/10.

1145/2925987

[32] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter. 2018. NVIDIA tensor core programmability, perfor-

mance precision. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW’18). 522–531. DOI:https://doi.org/10.1109/IPDPSW.2018.00091

[33] Robert Metzger and Zhaofang Wen. 2000. Automatic Algorithm Recognition and Replacement: A New Approach to

Program Optimization. The MIT Press.

[34] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. PolyMage: Automatic optimization for image pro-

cessing pipelines. SIGARCH Comput. Archit. News 43, 1 (Mar. 2015), 429–443. DOI:https://doi.org/10.1145/2786763.

2694364

[35] Shlomit S. Pinter and Ron Y. Pinter. 1994. Program optimization and parallelization using idioms. ACM Trans. Prog.

Lang. Syst. 16, 3 (May 1994), 305–327. DOI:https://doi.org/10.1145/177492.177494

[36] Sebastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal, Georges-André Silber, and Nicolas Vasilache. 2006.

GRAPHITE: Polyhedral analyses and optimizations for GCC. In Proceedings of the GCC Developers Summit. Citeseer,

2006.

[37] Bill Pottenger and Rudolf Eigenmann. 1995. Idiom recognition in the Polaris parallelizing compiler. In Proceedings of

the 9th International Conference on Supercomputing (ICS’95). ACM, New York, NY, 444–448. DOI:https://doi.org/10.

1145/224538.224655

[38] William Pugh and David Wonnacott. 1994. Static analysis of upper and lower bounds on dependences and parallelism.

ACM Trans. Prog. Lang. Syst. 16, 4 (1994), 1248–1278.

[39] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.

2013. Halide: A language and compiler for optimizing parallelism, locality, and recomputation in image processing

pipelines. ACM SIGPLAN Not., Vol. 48. ACM, 519–530.

[40] Gabe Rudy. 2010. CUDA-CHiLL: A Programming Language Interface for GPGPU Optimizations and Code Generation.

Ph.D. Dissertation. School of Computing, University of Utah.

[41] Amin Shafiee Sarvestani, Erik Hansson, and Christoph Kessler. 2013. Extensible recognition of algorithmic patterns

in DSP programs for automatic parallelization. Int. J. Parallel Prog. 41, 6 (1 Dec. 2013), 806–824. DOI:https://doi.org/

10.1007/s10766-012-0229-2

[42] Gordon D. Smith. 1985. Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford Univer-

sity Press.

[43] Toshio Suganuma, Hideaki Komatsu, and Toshio Nakatani. 1996. Detection and global optimization of reduction

operations for distributed parallel machines. In Proceedings of the 10th International Conference on Supercomputing

(ICS’96). ACM, New York, NY, 18–25. DOI:https://doi.org/10.1145/237578.237581

[44] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Chafi, Martin Odersky, and Kunle

Olukotun. 2014. Delite: A compiler architecture for performance-oriented embedded domain-specific languages. ACM

Trans. Embed. Comput. Syst. 13, 4s, Article 134 (Apr. 2014), 25 pages. DOI:https://doi.org/10.1145/2584665

[45] Arvind K. Sujeeth, Austin Gibbons, Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Martin Odersky, and Kunle

Olukotun. 2013. Forge: Generating a high performance DSL implementation from a declarative specification. In Pro-

ceedings of the 12th International Conference on Generative Programming: Concepts & Experiences (GPCE’13). ACM,

New York, NY, 145–154. DOI:https://doi.org/10.1145/2517208.2517220

[46] Arvind K. Sujeeth, Tiark Rompf, Kevin J. Brown, HyoukJoong Lee, Hassan Chafi, Victoria Popic, Michael Wu,

Aleksandar Prokopec, Vojin Jovanovic, Martin Odersky, and Kunle Olukotun. 2013. Composition and reuse with

compiled domain-specific languages. In Proceedings of the European Conference on Object-Oriented Programming

(ECOOP’13), Giuseppe Castagna (Ed.). Springer Berlin, 52–78.

[47] Allen Taflove and Susan C. Hagness. 2005. Computational Electrodynamics: The Finite-difference Time-domain Method.

Artech House.

[48] Thiago S. F. X. Teixeira, Corinne Ancourt, David Padua, and William Gropp. 2019. Locus: A system and a language for

program optimization. In Proceedings of the IEEE/ACM International Symposium on Code Generation and Optimization

(CGO’19). IEEE Press, Piscataway, NJ, 217–228. http://dl.acm.org/citation.cfm?id=3314872.3314898.

[49] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S. Moses,

Sven Verdoolaege, Andrew Adams, and Albert Cohen. 2018. Tensor comprehensions: Framework-agnostic high-

performance machine learning abstractions. CoRR abs/1802.04730 (2018). arxiv:1802.04730 http://arxiv.org/abs/1802.

04730.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.

https://doi.org/10.1145/2925987
https://doi.org/10.1145/2925987
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1145/2786763.2694364
https://doi.org/10.1145/2786763.2694364
https://doi.org/10.1145/177492.177494
https://doi.org/10.1145/224538.224655
https://doi.org/10.1145/224538.224655
https://doi.org/10.1007/s10766-012-0229-2
https://doi.org/10.1007/s10766-012-0229-2
https://doi.org/10.1145/237578.237581
https://doi.org/10.1145/2584665
https://doi.org/10.1145/2517208.2517220
http://dl.acm.org/citation.cfm?id=3314872.3314898
http://arxiv.org/abs/1802.04730
http://arxiv.org/abs/1802.04730


Declarative Loop Tactics for Domain-specific Optimization 55:25

[50] Sven Verdoolaege. 2010. Isl: An integer set library for the polyhedral model. In Proceedings of the 3rd International

Congress Conference on Mathematical Software (ICMS’10). Springer, Berlin, 299–302. http://dl.acm.org/citation.cfm?

id=1888390.1888455.

[51] Sven Verdoolaege. 2011. Counting affine calculator and applications. In Proceedings of the 1st International Workshop

on Polyhedral Compilation Techniques (IMPACT’11).

[52] Sven Verdoolaege and Tobias Grosser. 2012. Polyhedral extraction tool. In Proceedings of the 2nd International Work-

shop on Polyhedral Compilation Techniques (IMPACT’12).

[53] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen. 2014. Schedule trees. In Proceedings of the 4th

Workshop on Polyhedral Compilation Techniques (IMPACT’14, Associated with HiPEAC’14). 9.

[54] Sven Verdoolaege and Alexandre Isoard. 2017. Consecutivity in the isl polyhedral scheduler. (2017).

[55] Sven Verdoolaege and Gerda Janssens. 2017. Scheduling for PPCG. Report CW 706. Department of Computer Science,

KU Leuven, Leuven, Belgium. DOI:https://doi.org/10.13140/RG.2.2.28998.68169

[56] Qing Yi. 2012. POET: A scripting language for applying parameterized source-to-source program transformations.

Softw. Pract. Exper. 42, 6 (June 2012), 675–706. DOI:https://doi.org/10.1002/spe.1089

[57] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and Sanjay Rajopadhye. 2012. Alphaz: A system for

design space exploration in the polyhedral model. In Proceedings of the International Workshop on Languages and

Compilers for Parallel Computing. Springer, 17–31.

[58] Oleksandr Zinenko, Sven Verdoolaege, Chandan Reddy, Jun Shirako, Tobias Grosser, Vivek Sarkar, and Albert

Cohen. 2018. Modeling the conflicting demands of parallelism and temporal/spatial locality in affine scheduling.

In Proceedings of the 27th International Conference on Compiler Construction. ACM, 3–13.

Received August 2019; revised October 2019; accepted November 2019

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 55. Publication date: December 2019.

http://dl.acm.org/citation.cfm?id=1888390.1888455
http://dl.acm.org/citation.cfm?id=1888390.1888455
https://doi.org/10.13140/RG.2.2.28998.68169
https://doi.org/10.1002/spe.1089

